The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.0

Step-by-step example of how to evaluate an ad-hoc category of aliphatic amines and to predict an ecotoxicological endpoint

Category Evaluation Two phases of evaluation process

Phase I. Evaluation of Category & Data Gap Filling:

- Investigating the structural consistency of an ad hoc category (e.g., a category submitted by an industry consortium to a regulatory assessment program).
- Implementation of an ad hoc category building and data gap filling.

Phase II. Extension of Category & Data Gap Filling:

- Search for other analogues which are consistent with the submitted category.
- Data gap filling using new data matrix.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

5.10.2012

4

QSAR TOOLBOX Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category Workflow The following input workflow is used: • Input the file for submission as an user list.(In this case input file Aliphatic amines.smi*) • Evaluate the category applying the following profiling schemes: USEPA categories ECOSAR categorization Aquatic toxicity MOA of action Organic Functional Groups (nested) Aliphatic amines.smi* - file is packed in the zip file with all power point tutorials 5.10.2012 The OECD QSAR Toolbox for Grouping Chemicals into Categories 8

Phas Step	<u>e I:</u> Eval 1. Investig	uation Jating th M	n of C ne stru cat /orkfl	atego uctural egory ow/ <u>II</u>	ory & I consi nput	Data istency	a Gap y of ar	Filli n ad he	ng oc
QSAR Toolbox 30.0840 (aliphatic_am	inessmi) Profiling Single Chemic) Endpoint	Category Definition Chemical List) Data Gap Filling	► Preport				The OEC for Grou
New Open Glose Save	CAS# Name Structure Select	Delete Query ChemID	DB Inventory	List	Te Marcan	le norme	No normali	Theorem	Develops
Documents * Document (set)(Cust)alphatic_amines.cm)	Structure	H ₃ C NH ₂	NH2	CH ₃	H ₂ N CH ₃ CH ₃ CH ₃	CH3 NH2 OH	erendeel	e frei Bell	NH2
	Substance Identity — CAS Number — Chemical IDs	74-89-5 EC Number:200-820-0 Einecs Number:2008200 amino-methane methanamine	75-04-7 EC Number:200-834- Einecs Number:200. amino-ethane ethanamine	75-31-0 7 EC Number:200-860- Einecs Number:200. 2-amino-propane 2-aminopropane	75-64-9 9 EC Number:200-888- Einecs Number:200. (tert)butylamine 2-methylpropan-2-a	78-96-6 1 EC Number:201-162- Einecs Number:201 1-amino:2-propanol 1-aminopropan-2-ol	102-82-9 7 EC Number:203-058- Einecs Number:203 1-butanamine, n,n 1-dibutylaminobutane	104-75-6 7 EC Number:203-233-1 Einecs Number:203 1-hexanamine, 2-et 2-ethyl-1-hexanamine	108-91-8 EC Number:20 Einecs Numbe aminocyclohe: cyclohexanam
	— Chemical Name	metnyiamine monomethylamine	etnyi amine ethylamine monoethylamine	2-propanamine 2-propylamine isopropylamine mono-isopropylamine mono-isopropylamine	2-propanamine, 2 t-butylamine tert-butylamine	2-propanol, 1-amino- monoisopropanola	n,n-dibutyibutan-i-a tri n-butyiamine tri-n-butyiamine tributyi-amine tributyiamine	2-ethylnexan-i-amne 2-ethylhexyl amine 2-ethylhexylamine hexylamine, 2-ethyl-	cyclohexylami
	Structural Formula	CN	C(C)N	C(C)(C)N	C(C)(C)(C)N	C(C)(O)CN	C(CCC)N(CCCC)C	C(CCCC)(CC)CN	C1(N)CCCCC1
	Environmental Fate and Transport								
-C(N)CCC	Human Health Hazards								
	Carcinogenicity Developmental Toxicity / Terato								
						-			

The OECD QSAR Toolbox for Grouping Chemicals into Categories

5.10.2012

14

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category <u>Extracting 2D and 3D parametrs</u>

QSAR TOOLEOX **Phase I:** Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category Extracting 2D and 3D parametrs OSAR TOOLBOX Invert Abox H₃C NH CH. 1. Right click above the parameter in the endpoint tree; 2. The user can calculate all parameters or extract current parameter for all chemicals in the current row. 3. In this exercise calculate all (2D) parameters. $\prod_{i=1}^{n}$ If some of the parameters (in case of new chemicals) are not calculated then the message (4) appears If you want to stop the calculation process, click the **Cancel** button. The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012

Phase I: Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category

QSAR TOOLBOX	(+) ► Input	Fig ► Profiling ► Endpoint ► Category	Definition Data Gap Fi	llling ▶ Report					About Upda
Profiling Chemes								The for i into	OECD QSAR Tool Grouping Chemica Categories
Pdvi Gen Den Boere					- <u>-</u>	<u>.</u>		Dev	eloped by LMC, Bu
Profiling methods		Filter endpoint tree	1 [target]	2 [target]	3 [target]	4 [target]	5 [target]	6 [target]	7 [target]
Select All Unselect All Invert Predefined Database Affliation Inventory Affliation OECD HPV Chemical Categories Distributions Time	About	Structure	CH3	H ₃ CNH ₂	NH2	CH3	H ₂ N CH ₃ CH ₃ CH ₃	NH2 OH	<i>6</i> , (,
US-EPA New Chemical Categories	-	EParameters							
General Mechanistic			Con not colculate	Can not calculate	Con not colculate	Con not colculate	Can not calculate	16.2	Can not calo
Biodeg BioHC half-life (Biowin) Biodeg primary (Biowin 4)	- P	(Q) Resis el(a (Chemaxon)	10.2	10.1	10.2	10 A	10.7	9.6	10.2
Biodeg probability (Biowin 1)		(Q) Basic pica (Criemaxon)	1.78 L/kg wet	0.912 L/kg wet	0.955 L/kg wet	1.05 L/kg wet	1.121/kg wet	0.891 L/kg.wet	56.21/kg w
- Biodeg probability (Biowin 2)		DAF (Investoration)	1.47 L/kg wet	0.95E L/kg wet	0.992 L/kg wet	1.04 L/kg wet	1.02 L/kg wet	0.944 L/kg wet	27 L/kg wat
Biodeg probability (Biowin 5)		BAF (lower trophic)	1.47 L/kg wet	0.955 L/kg wet	0.562 L/kg wet	1.04 L/kg wet	1.00 L/kg wet	0.944 L/kg wet	37 L/kg wet
Biodeg probability (Biowin 7)		BAF (mid tropnic)	1.55 E/kg wet	0.946 L/Kg wet	0.577 L/kg wet	1.04 L/kg wet	1.05 Erkg wet	0.550 L/kg wet	41.2 L/Kg W
Biodeg ultimate (Biowin 3)		BAF (upper trophic)	1.78 L/kg wet	0.914 L/kg wet	0.955 L/kg wet	1.05 L/kg wet	1.13 L/kg wet	0.899 L/kg wet	56.8 L/kg w
DNA binding by OASIS v. 1.1		 BAF (upper trophic, biotransformation rate is zero) 1.91 L/kg wet	0.923 L/kg wet	0.973 L/kg wet	1.09 L/kg wet	1.16 L/kg wet	0.906 L/kg wet	78.2 L/Kg We
DNA binding by OECD		-BCF	3.16 L/kg wet	3.16 L/kg wet	3.16 L/kg wet	3.16 L/kg wet	3.16 L/kg wet	3.16 L/kg wet	33.9 L/kg w
Hydrolysis half-life (Ka, pH 7)(Hydrowi	າ	-BCF (lower trophic)	1.47 L/kg wet	0.955 L/kg wet	0.982 L/kg wet	1.04 L/kg wet	1.08 L/kg wet	0.944 L/kg wet	36.9 L/kg w
Hydrolysis half-life (Ka, pH 8)(Hydrowi	ກໍ	 BCF (mid trophic) 	1.53 L/kg wet	0.948 L/kg wet	0.977 L/kg wet	1.04 L/kg wet	1.09 L/kg wet	0.938 L/kg wet	41.2 L/kg w
Hydrolysis half-life (Kb, pH 7)(Hydrowi	n)	-BCF (upper trophic)	1.78 L/kg wet	0.914 L/kg wet	0.955 L/kg wet	1.05 L/kg wet	1.13 L/kg wet	0.899 L/kg wet	56.8 L/kg w
Hydrolysis half-life (Kb, pH 8)(Hydrowi	n)	 BCF (upper trophic, biotransformation rate is zero 	 1.89 L/kg wet 	0.923 L/kg wet	0.973 L/kg wet	1.09 L/kg wet	1.16 L/kg wet	0.906 L/kg wet	71.4 L/kg w
m	F.	-Bio Half-Life	0.215 Days	0.0724 Days	0.0962 Days	0.125 Days	0.175 Days	0.025 Days	0.723 Days
Metabolism/Transformations		-Biodeg probability (Biowin 1)	0.975	0.887	0.88	0.873	0.683	1.02	0.948
	direct.	-Biodeg probability (Biowin 2)	0.993	0.975	0.97	0.964	0.795	0.985	0.984
Seect All Unsect All Invert	ADOUL	-Biodeg probability (Biowin 5)	0.677	0.653	0.661	0.52	0.597	0.682	0.558
Occumented	<u>^</u>	-Biodeg probability (Biowin 6)	0.808	0.796	0.8	0.616	0.643	0.806	0.645
Observed Microbial metabolism		-Biodeg probability (Biowin 7)	0.694	0.934	0.96	0.688	0.44	0.927	0.501
Observed Rat Liver metabolism		-BioHC half-life	Can not calculate	Can not calculate	Can not calculate	Can not calculate	Can not calculate	Can not calculate	Can not calc
- Observed Rat Liver S9 metabolism		-Biotransformation Half-Life	0.215 Days	0.0724 Days	0.0962 Days	0.125 Days	0.175 Days	0.025 Days	0.723 Days
Autovidation simulator		-Boiling Point	87.7 °C	10.2 °C	36.9 °C	47.3 °C	62.8 °C	131 °C	166 °C
Dissociation simulation		- Exp Boiling Point	78 °C	-6.3 °C	16.6 °C	31.8 °C	45 °C	160 °C	169 °C
		Eve Hennis Law Constant	1.76 Pa-m3/mole	1.12 Pa-m3/mole	1.25 Pa-m3/mole	4 57 Pa-m3/mole	3.63 Pa-m3/mole	Can not calculate	9.65 Pa-m3/

QSAR TOOLEOX **Phase I: Evaluation of Category & Data Gap Filling** Step 3. Reading data B 01010 01 1 10100) Input tabase in the đ -0-Q Structure CH3 NH2 Substance Identity Physical Chemical Prope Environmental Fate and ... Ecotoxicological Informati Human Health Hazards 3 V OK X Cancel @ All en Choose from Tautomers Profile ect Al Unselect Al Invert About 1. Select databases related to aquatic toxicity; 2. Click Gather; 3. Click OK. 5.10.2012 32 The OECD QSAR Toolbox for Grouping Chemicals into Categories

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data

Due to the overlap between the Toolbox databases same data for intersecting chemicals could be found simultaneously in more than one database. The data redundancy is identified and the user has the opportunity to select either a single data value or all data values.

ta points		1)	1		
	Endpoint	CAS	Structure	Value	Age	Select one
		75-04-7	/CH3	4.5E4 micrograms per liter	1	Invert
		75-04-7	NH ₂	4.5E4 micrograms per liter		
		104-75-6	-/ ^{-**}	360 micrograms per liter		Check All
		104-75-6		360 micrograms per liter		Uncheck All
		104-75-6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.2E4 micrograms per liter		
		104-75-6	CH2 NH2	1.2E4 micrograms per liter	2	∼ ок
		109-73-9		9E3 micrograms per liter	+	Cancel
					۱.	
	1.	Click Sele	ct one; 2. Clie	ck OK		
	3	The indicati	on for reneati	na values		

QSAR TOOLBOX	
Phase I: Evaluation of Category & Data Gap Step 3. Reading data	o Filling
The system automatically gives indication for the num gather experimental data points	iber of
QSAR Toolbox 3.0.0.840	
The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012	34

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data. Inserting data into the data matrix

Data Import	Export Delet	nventory Database	utomerize						for G into C Devel	ecd QSAR 1000000 ouping Chemicals ategories oped by LMC, Bulgar
Databases	Filter endpoint tree	1 [target]	2 [target]	3 [target]	4 [target]	[5 [target]	6 [target]	7 [target]	8 [target]	9 [target]
Select Al Unselect Al Invert Physical Chemical Properties Environmental Fate and Transport Selectoxicological Information Aquesic ECETOC	Structure	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CHS NMS		en sen	~~~~ ^{~~~}	CH3 NH2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>.</i>
Aquatic Japan MoE Aquatic OASIS Aquatic OASIS Aquatic US-EPA ECOTOX ECHA CHEM	Substance Identity Physical Chemical Prope Environmental Fate and									
Human Health Hazards	⊞Ecotoxicological (16/290 ⊞Human Health Hazards ⊞Profile)M: 4.8(3.5;6.6) mg/	M: 20 mg/L, 40 mg/	. M: 178 mg/L, 16.6	M: 1.04 mg/L, 1.04		M: 155 mg/L, 22 m	M: 278 mg/L, 275(2		M: 56.9 mg/L, 56
Inventories										
AICS Canada DSI. COSING DISTOX										
EUNARN EINECS HPYC DECD METL Japan REACH ECB TSCA										
US HPV Challenge Program	* 📄									

QSAR TOOLEOX

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine

QSAR TOOLBOX	Finput Profile	ng Findpoint	Category Defin	ition → Data Gap Fill	ling > Report					S S X	
Data Import Gather Import Gather Import ILCLIDS Expo	Energy Delete The lange of									e OECD QSAR Toolbox r Grouping Chemicals to Categories eveloped by LMC, Bulga	
Select Al Unselect Al Invert Select Al Unselect Al Invert Physical Chemical Properties Invironmental Fate and Transport Assate COTOC Assate COTOC Assate COTOC Assate Cotos	Filter endpoint tree Structure BSubstance Identity	1 2 	on {	3 01	6 	5 0 CH2	6 	CH3 CH3 NH2	₿ ~~	9 	
♥ Aquate US & PA ECOTOX ECH & CH2M ♥ Terrestrial US & PA ECOTOX Human Health Hazards	Physical Chemical Prope Environmental Fate and Ecotoxicological (16/290 Human Health Hazards Profile	M: 4.8(3.5;6.6) mg/ M.	20 mg/L, 40 mg/	M: 178 mg/L, 16.6	M: 1.04 mg/L, 1.04		M: 155 mg/L, 22 m	M: 278 mg/L, 275(2		M: 56.9 mg/L, 56	
Inventories dect All Unselect Al Invert About AfcG consete 00. cosseq											
ECHA PR EINECS HEVE CECD											
					5.1	0.2012				20	

QSAR TOOLBOX **Phase I: Evaluation of Category & Data Gap Filling** Step 4. Data Gap Filling for 2-Butanamine Navigate to the target endpoint: Intoxication, D.magna,EC50, 48h Æ 1 (1/1) (4/12) (1/1) (11/12) M: >8.3 mg/L M: 20(8.8-84) mg/L M: 20(11-42) mg/L M: 19(8.7-40) mg/L M: 19 3 13) M: 1.9(1.5-2.4) mg/L M: 9.4(6.9-12) mg/L M: 8.6(7-11) mg/L M: 8(6.1-10.8) mg/L M: 56 2 1. Type Daphnia in the filter field; 2. Navigate to target endpoint by opening the nodes and 3. Highlight the gap which will be filled in; 4. Select Trend analysis; 5. Click Apply. The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012 40

QSAR TOOLBOX **Phase I:** Evaluation of Category & Data Gap Filling OSAR Toolbox 3.0.0.84 1 Th. Report (+) 01010 01 1 10100 -CH, 1 (4/12) M: =22 mg/L, =49 (1/1) M: 36 mg/L 2 (11/12) M: 58(47;72) mg/L M: >8.3 mg/L M: 20(8.8;84) mg/L M: 20(11;42) mg/L M: 19(8.7;40) -E124 h Hide Show hi (1.5;2.4) mg/L M: 9.4(6.9;12) mg/L M: 8.6(7;11) mg/L M: 8(6.1;10.8 (11/13) ELCO (4/4) Collapse all ELC100 (4/4) (4/4) (2/2) (1/2) Sort (targe Sort Function. Set tree his Export CAS list 3 Export Copy pati The little blue triangle is indication that the endpoint tree below is ordered. To see order of nodes of the tree, 2. **Right click** above endpoint tree near this triangle; 3. Select Set tree 1. hierarchy. The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012 43

Cutlook Background Category evaluation - overview Phase I. Evaluation of Category & Data Gap Filling Step 1: Investigating the structural consistency of an ad hoc category. Step 2: Investigating the applicability domain of an ad hoc category. Step 3: Reading data for the analogues Step 4: Data gap filling for 2-Butanamine Back to Trend analysis

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Statistics</u>

QSAR TOOLBOX

Filing é Apoly									The OECD Q for Grouping into Categori Developed b	SAR Toolbox Chemicals es y LMC, Bulgaria	
Data Gap Filing Method	Daphnia	1 [target]	4	7	8	12	13	18	19	^	
Read-across											
Trend analysis			m ₃	~ H ₂ C.	/NH			- (~	~ر ×		
(0)SAR models	Structure		. (. Y	NHa	~~	~	~~~		~~		
(g) sor more a		CH3 N	H2	1112	CH3	CHs	6-n	dv,	ch,		
Target Endpoint										_	
ptoxicological Information Aquatic Toxicity	Dap (11	(13)		.4) mg/L M: 163(147;180) m	M: >100 mg/L	M: 56(27;170) mg/L	M: 0.58(0.39(0.79)	. M: 8.6(7;11) mg/l	L M: 9.4(6.9;12) mg/L		
toxication EC50 48 h Animalia		4/4]			M: 19 mg/L					*	
v thropoda(Invertebrates) Branchiopoda(branchiopods) Daphnia magna	Descriptors Prediction Adequac	y Cumul. freq.	Statistics Residuals						Accept prediction		
	Statistical characteristics		TA model					Return	o matrix		
	Number of data points, (N)		7								
	Coefficient of determination, (R2)		0.974					= Select	t/filter data		
	Adjusted coefficient of determination,	(R2ad))	0.969					Subcate	gorize		
	Coefficient of determination - leave or	ne out, (Q2)	0.949					Mark chemicals by WS			
	Coefficient of correlation for external	set, (r2)						Mark chemicals by descriptor value			
	Sum of squared residuals, (SSR)		0.220					Mark author paints			
	Standard deviation of residuals, (siv) Sample standard deviation of residuals	(e)	0.210					Mark ou	Plank outlier points		
	Enter function. (E)	a, (a)	188					Filter po	Filter points by test conditions		
	Fisher threshold for statistical significa	nce, (Fa)	10.6					Mark for	cused chemical		
								Mark for	used points		
								+ Select	tion navigation		
	60							+ Gap fi	lling approach		
	- model descriptor		Intercept					Descr	iptors/data		
	- coeff. value		2.34					• Model	/(0)5AR		
	- coeff. range		± 0.34					+ Calcul	ation options		
	- significance		Tes 0.277 (mb1)					Visual	options		
			0.017 (19.04)					Set units	s in figure title		
	b1							Show or	nfrience ranne		
	- model descriptor		log Kow					Show Co			
	- coeff. value		0.822					Show in	tercorrelations		
	- coeff. range		± 0.154					• Inform	nation		
	- significance		Yes					Misce	laneous		
	- max. covariation		0.377 (vs b0)								
									_		
sorted descending(targets priority):		Dar	ta gap filling								

QSAR TOOLBOX Phase II: Extension Category & Data gap filling Step 1: Category definition/*Defining ECOSAR (strict)* QSAR Toolbox 3.0.0.840 (aliphatic (7) H. 3 -1 CH CH H2N H₃C Structure CH3 NH2 NH2 2 бн CH, CH3 NH2 stance Id Ecotoxicological Inf Aquatic toxicity classification by ECOSAR Aquatic To: (1/1) Target(s) profiles M: =9.5 mg/L, =18 M: =19 mg/L, =43 - Behavio (4/12) (1/1) M: 136(112;166) mg/L M: 180(155;209) m... M: >100 mg/L (11/12) -124 h -F148 h C_EA -CAR. oda M: 163(147:180) m. M: >100 mg/L Dag (11/13) -⊞LC0 -⊞LC100 -⊞LC50 M: 19 mg/L M: 150 mg/L M: 75 mg/L (4/4) (4/4) M: 0.62 mg/L M: 5 mg/L M: 2.2 mg/L (4/4) esult K M: 136 mg/L - Mortality (2/2) (1/2) V Strict X Cancel **EProfile** 5 4 1. Select the target chemical 2. Highlight "Aquatic toxicity classification by ECOSAR"; 3. Click Define; 4. Select Strict. 5. Click OK 5.10.2012 The OECD QSAR Toolbox for Grouping Chemicals into Categories 58

Phase II: Extension Category & Data gap filling Step 1: Category definition/ <u>Reading data</u>
 The Toolbox will now retrieve those chemicals that have the same protein binding mechanism than the target compound.
 The Toolbox automatically request the user to select the endpoint that should be retrieved.
 The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).
Read data? • All endpoints • Choose Image: Choose
 In this example, as only databases are selected that contain information for aquatic toxicity endpoint, both options give the same results.
The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012 60

QSAR TOOLBOX

Phase II: Extension Category & Data gap filling Step 1: Category definition/<u>Reading data</u>

	Endpoint	CAS	Structure	Value	Age Select one
		59-89-2	0	1E3 mM	1
		59-89-2	0=4	1E3 mM	Invert
		614-00-6	9 ₈₋₆ 5%	20 mM	Check All
]	614-00-6		20 mM	
		924-16-3	.»مر _	30 mM	Uncheck All
		924-16-3		30 mM	
		62-75-9	24	490 mM	2 🗸 ок
	1	62-75-9	s	490 mM	
_	1				

QSAR TOOLBOX	
Phase II: Extension Category & Data gap filling Step 1: Category definition/ <u>Reading data</u>	
The system automatically gives indication for the number of gather experimental data points QSAR Toolbox 3.0.0.840 Solid data points gathered accross 317 chemicals. 1. Click OK	
The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012	62

QSAR TOOLSOX Phase II: Extension Category & Data gap filling Step 2: Navigate to the target endpoint/EC 50, 48h, D.magna QSAR Toolbox 3.0.0.84 B Ê н 01010 01 1 10100 QSAR TOOLBOX \square 0-5 CH3 NH \bigcirc Ъ ~{ Ъ (5/5 (12/40 (3/3 (25/25 M: 10 mg/L M: 8 mg/L M: 26.9(19.7;40.4) M: 192(148;272) mg/L M: 188(153;241) mg/L M: 19(8.7;40) mg/L (43/47) 2 M: 5.76(4.34;7.55) ... M: 70.1(51.1;99.3) ... M: 73.7(62.6;91.2) ... M: 8(6.1;10.8) mg/ -ELCO **ELC** TEL CSI M: 7.89 mg/L, >46 (1/3 (2/2 (35/96 M: 0.075 mg/L, 0.9.. M: 0.049 mg/L, 0.1... M: 4.4 mg/L, 9 mg/L 1. Navigate to target endpoint by opening the nodes; 2. Highlight the gap which will be fill in. 3. Move to Data Gap Filling 5.10.2012 The OECD QSAR Toolbox for Grouping Chemicals into Categories 64

	Ste							9				
		эр 5: і	Data Ga	ap Fillir	ng							
QSAR Toolbox 23.0.1130 [Aliphatic aminessm]	Frofiling → Endgoint						s door Updae					
Piling 2								The OECD QSAR Tool for Grouping Chemica into Categories Developed by LMC, B	albox als Bulga			
Aing Method	Daphnia	1 (Target)	2	3	4	5	6	7	8			
Read-across Trend analysis (Q)SAR models	Structure	СН3			CH3 CH3	NH ₂ NH ₂	CH3 CH3	NH-CH3 CH3				
Ecotoxicological Information Aquatic Toxicity Intoxication Animalia Arthropode(Invertebrates) Branchippede(branchippede) Dashnia m	Substance Identity IParameters											
48 h EC50	Ecotoxicological Information											
	- Avoidance	(5/5)				M =1 2 mail =10	M: 100 mg/L	M =206 mail =00				
	-@Immobilisation	(25/25)		M: 15 mg/L		m. – n. mgr., – ro	M: 58 mg/L	- III 200 Hight, - 30				
	-@Intoxication -@Animalia								+			
	-⊟Arthropoda(Invertebrates)	(shoot							F			
	- Ceriodaphnia dubia	(2/2)							-			
	-⊕Daphnia magna -⊞24 h	(48/76)				M: 14 mg/L, 16 mg/.	M: 164(161-168) mg/	L M: 48(44-52) mg/L				
	-====48 h -====C50	(52/64)					M: 226 mg/L		+			
	LC50	(3/3)				M: 46 mg/L		M: 46(40.1-52.8) ma/l	L			
	Daphnia pulex	(3/4)				M- 26 6/20 4-24 4)	M: 164 mail 66.6	M: 49.2 mail 49.4				
	Bereduction	(20/127)		M: 4.7 mg/L, 8.4 mg/L		M: 0.16 mg/L, 0.32	. M: 4.2 mg/L, 5.7 mg/	LM: 1-15 mg/L				
	- 224 h - 248 h - EC50 - LC50 - 296 h	(48/76) (52/64) (3/3) (1/1) (3/4)				M: 14 mg/L, 16 mg/ M: 46 mg/L	M: 164(161-168) mg/	L M: 48(44-52) mg/L M: 46(40.1-52.8) m	ng/			
	- Mortality	(28/127)				M: 26.5(20.4-34.4)	M: 164 mg/L, 55.5	M: 48.3 mg/L, 49.4				
	Deproduction	(35/96)		M: 4.7 mg/L, 8.4 mg/L		M: 0.16 mg/L, 0.32	. M: 4.2 mg/L, 5.7 mg/	LM: 1-15 mg/L				

QSAR TOOLBOX Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling QSAR Toolbox 3.0.0.840 [aliphatic_an **E** Report C E Profiling Ъ. J-0 5 5 Structure 52 CH3 NH2 0 CH3 - Daphnia magna (52/64 Adequacy Cumul. freq. Statistics Residuals riptors Prediction cept predic n to m making a linear approximation, based on 52 val Observed target value: N/A, Predicted targ +3.63 +0.3 9.0 11.0 4.0 7.0 r X: log Kow ٠ The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012 67

QSAR TOOLEOX Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Subcategorize by Water solubility</u> QSAR Toolbox 3.0.0.840 [aliphatic Structu Ъ £ { 5 СНа 3 4 Open Select/Filter data panel; 2. Click Mark chemical by Sw; 3. Select Water solubility 1. (fragments); 4. Click OK The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012 68

QSAR TOOLBOX Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Prediction result</u> QSAR Toolbox 3.0.0.840 [aliphatic Endpoin Report + Input Profilin 01010 01 11 10100 Structure CH1 CH1 сн, 5 NH2 — Daphnia magna (52/64 Accept prediction Return to matrix of Ec imation, based on 11 values from 11 analogues, alue: N/A, Predicted target value: 77.7 mg/L, ect/filter da 1 als by WS log(1 als by i Mark outlier points 6.0 ts by tes 5.5 5.0 Mark fo 4.5 4.00 3.5 3.0 5 2.01 2.00 log Kow 3.00 4.00 Descriptor X: log Kow -Prediction result is 77.7 mg/l. The OECD QSAR Toolbox for Grouping Chemicals into Categories 5.10.2012 72
