



#### **Human Health Models**

#### **Skin sensitization**

Laboratory of Mathematical Chemistry, Bulgaria

#### Outline

- Predicting skin sensitization in TIMES
  - Laboratory of Mathematical Chem
- TIMES-SS model
- Applicability domain in TIMES (Q)SAR models
- Model performance
- Conclusions

#### Mechanism of skin sensitization

Assumptions:

- 1. Chemicals always penetrate stratum corneum
- 2. Formation of protein conjugates is a premise for ultimate effect
- 3. Metabolism may play significant role in skin sensitization



## Predicting skin sensitization in TIMES Main concept

- In order to predict skin sensitisation effect taking into account metabolic activation of chemicals in same platform are combined:
  - ✓ Toxicokinetics specific metabolism
    - Pre-electrophilic activation Autoxidation reactions
    - Pro-electrophilic activation Phase I and Phase II reactions
  - Toxicodynamic interaction with macromolecules

Dimitrov, et al., Skin sensitization: Modeling Based on Skin Metabolism Simulation and Formation of Protein Conjugates, *Internatational Journal of Toxicology*. 24, 189-204, 2005.

#### **Predicting skin sensitization in TIMES**



#### Predicting skin sensitization in TIMES TIMES-SS model

- 1) Estimates skin sensitisation potency by integrating a simulator for skin metabolism with (Q)SARs.
- 2) Training set of 875 chemicals with experimental data from three sources (436 LLNA, 568 GPMT and 171 BfR).
- 3) Predicts potency as one of three classes: strong, weak or non sensitising.
- 4) A multi-step applicability domain is incorporated into the model.

## TIMES-SS model Skin metabolic simulator

- Skin metabolic simulator contains around 380 hierarchically ordered transformations based on empiric and theoretical knowledge and peer-reviewed by human experts:
  - Non-enzymatic transformations:
    - Hydrolysis of salts
    - Autoxidation reactions
  - Enzyme-mediated reactions (*Phase I and Phase II*):
    - C-hydroxylation
    - Glucoronidation
    - 0 .....
  - Protein binding reactions (PBR)

# TIMES-SS model Different type of principal transformations

#### Autoxidation reactions

Allylic hydroperoxide formation



#### Proteins binding reactions

Nucleophilic substitution on halogenated C sp3 atom



$$\label{eq:rescaled} \begin{split} \mathbf{R} = -\mathbf{C} \Xi \mathbf{C}, \ -\mathbf{C} \Xi \mathbf{N}, \ -\mathbf{C} = \mathbf{C}, \ -\mathbf{C} = \mathbf{S}, \ -\mathbf{C} = \mathbf{O}, \ -\mathbf{NO}_2 \\ \ \mathrm{Hal} = \mathbf{Cl}, \ \mathrm{Br}, \ \mathrm{I} \end{split}$$

Schiff base formation with aldehydes



## TIMES-SS model Protein binding reactions

- Covalent interactions of chemicals/metabolites with skin proteins are described by almost 160 protein binding reactions (transformations).
- 3D-QSARs are applied for some of these transformations.
- Transformations characterized by same mechanism of interaction are combined in 97 alerts.
- The reliability of the reactions and alerts is assessed

## TIMES-SS model 3D QSAR models



## TIMES-SS model 3D QSAR models

• COREPA models of reactivity

| # | Alerting group              | Chemical class                                                  | Descriptors in the<br>corresponding COREPA model                           |
|---|-----------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| 1 | O = CH<br>R<br>R = H, alkyl | Aldehydes                                                       | Е <sub>номо</sub><br>MW                                                    |
| 2 | R = OC, C, N, S             | Conjugated<br>systems with<br>electron<br>withdrawing<br>groups | Electronegativity<br>E <sub>GAP</sub><br>log K <sub>ow</sub><br>Accept DLC |

## TIMES-SS model Pre-electrophilic activation

- The Autoxidation reactions included in the skin simulator are "switched off"
- Autoxidation (AU) transformations are simulated by using an external AU simulator
- The external simulator containing more than 240 transformations, extracted from documented autoxidation pathways in the scientific literature, is applied on parent chemicals
- All generated unique autoxidation products are then submitted to skin sensitization model
- Parent structure is also submitted to skin model assuming that it is not fully autoxidyzed (kinetic data is not used)

#### **TIMES-SS** using an external Autoxidation simulator

Predicted metabolism of isoeugenol



13











obtained after metabolism of the

parent chemical.

## Performance of the PBR and alerts *Reliability Criteria*

#### 1. Performance:

- Transformation Performance the ratio between the number of correct (Strong, Weak and Non sensitizers) predictions and the total number of chemicals within the local training set associated with the transformation
- Alert Performance the ratio between the number of correct (Positive and Negative) predictions and the total number of chemicals within the alert training set
- In general, the alert performance is higher than the performance of the constituting transformations, because chemicals are classified as:

✓ Strong/weak/non – when transformation reliability is determined

✓ Positive/negative – when alert reliability is determined

- 2. Number of chemicals
- 3. Mechanistic justification

#### Performance of the PBR and alerts Reliability Criteria

Based on their performance PBR/alerts have been classified with:

- **High** performance (perf.  $\ge$  60% and n  $\ge$  5)
- **Low** performance (perf.  $\leq$  60%)
- Undetermined (1< n <5)
- Undetermined theoretical

## Performance of the PBR and alerts Reliability of PBR

Summary: Total number of PBR in the TIMES-SS model is 158

- High performance 33
- Low performance 4
- **Undetermined** (1< n <5) 65
- Undetermined theoretical 56



#### Performance of the PBR and alerts Reliability of PBR

Options for minimizing the number of:

- PBRs with low performance the PBRs will be reassessed by expert and adjusted in TIMES-SS if necessary.
- PBRs with Undetermined performance If the expert is certain in the reactivity of the PBR it will be flagged as "Reliable according to 3<sup>rd</sup> party expert".

#### Performance of the PBR and alerts *Reliability of PBR*

## PBRs have been review by Dr. David Roberts and coded by LMC in TIMES SS model

The following improvement have been reached



#### Performance of the TIMES-SS model

#### **<u>TIMES-SS</u>** - using the external Autoxidation simulator

Training set: 875 chemicals

Sensitivity:

Strong sens. 91%

Weak sens. 52%

Specificity: 70%

Concordance: 76%

#### Conclusions

- Prediction of skin sensitization is provided in a single modeling platform accounting for specific metabolism and protein adducts formation.
- Criteria for reliability of protein binding reactions have been introduced.
- Numbers of protein binding reactions with low and undetermined reliability have been reassessed by human expert (Dr. Roberts).
- Sets of protein binding reactions having the same mechanism of interaction have formed different alerting groups.