OECD QSAR Toolbox v.3.1

Example for predicting skin sensitisation potential of (2E,6Z)-2,6-nonadien-1-ol accounting for skin metabolism
Outlook

- Background
- Objectives
- The exercise
- Workflow
Background

• This is a step-by-step presentation designed to take the user through the Toolbox workflow for filling data gap for skin sensitization of trans-2,cis-6-nonadienol accounting for its skin metabolism
Outlook

• Background
• **Objectives**
• The exercise
• Workflow
Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

• Simulating skin metabolism of target chemical
• Identify analogues for a selected active metabolite
• Filling data gaps for active metabolites by read across
• Assign prediction of metabolite to the parent chemical
Outlook

• Background
• Objectives
• The exercise
• Workflow
The Exercise

• In this exercise we will predict the skin sensitization potential for target chemical (trans-2,cis-6-nonadienol) [CAS # 28069-72-9].

• Profile the target chemical and identify no Protein binding alert for target chemical.

• Gather available experimental data for the target chemical and identify positive experimental data.

• Skin metabolism of target chemical will be accounted for.

• Read across prediction for active metabolite will be applied.

• The predicted result of metabolite will be assigned to the target chemical.
Outlook

- Background
- Objectives
- The exercise
- Workflow
Workflow

• As you know the Toolbox has 6 modules which are typically used in sequence:
 • Chemical Input
 • Profiling
 • Endpoint
 • Category Definition
 • Data Gap Filling
 • Report

• In this example we will use the modules in a different order, tailored to the aims of the example.
Outlook

• Background
• Objectives
• The exercise
• Workflow
 • Input
Chemical Input
Overview

• This module provides the user with several means of entering the chemical of interest or the target chemical.
• Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.
User Alternatives for input of Chemical:

A. Single target chemical
 • Chemical Name
 • Chemical Abstract Services (CAS) number (#)
 • SMILES (simplified molecular information line entry system) notation/InChi
 • Drawing chemical structure
 • Select from User List/Inventory/Databases
 • Chemical IDs such as EC number, ENECS number

B. Group of chemicals
 • User List/Inventory
 • Specialized Databases
Chemical Input
Input Screen

• Open the Toolbox.

• The six modules in the workflow are seen listed next to “QSAR TOOLBOX” title.

• Click on “Input” (see next screen shot)
Chemical Input
Input Screen
Chemical Input
Input target chemical by CAS#
Chemical Input
Enter CAS# of trans-2,cis-6-nonadienol

1. Enter the CAS# In the blank field; 2. Click Search button; 3. Press OK
Chemical Input
Target chemical identity

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-dimentional depiction.

1. Click OK to enter the target structure into data matrix
Double click “Substance Identity” displays the chemical identification information.

The user should note that existing names of the target chemical are presented in different colours. This indicates the reliability of relation CAS-Name for the target chemical (see next screen shots).

The workflow on the first module is now complete, and the user can proceed to the next module.
Chemical Input
Target chemical identity
Chemical Input
Target chemical identity

The colour code indicates the reliability of the chemical identifier:

- **Green**: There is a high reliability between the identifier and the structure. This colour is applied if the identifier is the same in several quality assured databases.

- **Yellow**: There is only a moderate reliability between the identifier and the structure. The colour is applied if the identifier is the same in several databases for which the quality assurance could not be established.

- **Red**: There is a poor reliability between the identifier and the structure. The colour is applied if the identifier is allocated to different structures in different databases.
Outlook

• Background
• Objectives
• The exercise
• Workflow
 • Input
 • Profiling
Profiling
Overview

• “Profiling” refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.

• Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.
Profiling
Side-Bar to Profiling

• For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, Protein binding by OASIS v1.1 and clicking on “View” (see next screen shot).
1. **Highlight** the profiler
2. **Click** View
3. **Click** Advance in order to see detailed description of highlighted category (in this case “Aldehydes”)
1. Highlight the profiler
2. Click View
3. Select “Aldehydes”
Profiling
Profiling the target chemical

• The outcome of the profiling determines the most appropriate way to search for analogues (detailed information about profilers could be found in “Manual for Getting started” (Chapter 4) published on the OECD website: http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm

• Table 4 - 1 in chapter 4 (Manual for getting started) lists a selection of profilers and their relevance for different endpoints of regulatory relevance

• The following profiling schemes are relevant to the **Skin sensitization**:
 - Protein binding by OASIS v.1.1 – general mechanistic
 - Protein binding by OECD – general mechanistic
 - Protein Binding Potency – general mechanistic
 - Protein binding alerts for skin sensitization by OASIS v1.1 – endpoint specific
Profiling
Profiling the target chemical

• This selects (a green check mark appears) or deselects (green check mark disappears) profilers.

• For this example, go through the general and endpoint specific profiling mechanisms and highlight those that apply to skin sensitization (see next screen shot).
1. Check protein binding profiles from General Mechanistic and Endpoint specific group: Protein binding for skin sensitization by OASIS profiler.
2. Click Apply
Profiling
Profiling the target chemical

• The actual profiling will take up to several seconds depending on the number and type of profilers selected.
• The results of profiling automatically appear as a dropdown box under the target chemical (see next screen shot).
• Please note the specific protein-binding profilers.
• No protein binding alert has been found for the test compound (trans-2,cis-6-nonadienol).
The target chemical has no protein binding alert. In this respect no skin sensitization effect is expected.

1. Double click on “Profile” node to review the profiling results.
Outlook

• Background
• Objectives
• The exercise
• Workflow
 • Input
 • Profiling
• Endpoint
Endpoint Overview

• “Endpoint” refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox.

• Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).
In this example, we limit our data gathering to a single toxicity endpoint (skin sensitization).

In this example, we collect data from the databases containing experimental results for Skin sensitisation (Skin sensitisation and Skin sensitisation ECETOC).

- Click on “Endpoint” in the Toolbox workflow.
- Expand the “Human Health Hazards” section
- Click on the box to select the relevant databases.
- Click on “Gather data” (see next screen shot).
Endpoint
Gather data

1. Click Endpoint
2. Expand the Human Health Hazards section
3. Select databases related to the target endpoint
4. Click Gather
Endpoint
Gather data

• Toxicity information on the target chemical is electronically collected from the selected dataset(s)

• It should be kept in mind that the search for data and analogues is performed only among the chemicals which are listed in the selected databases, which in this example are Skin sensitization and Skin sensitization ECETOC

• In this example, there is Positive experimental data for the target chemical (see next screen shots)
Toxicity information on the target chemical is electronically collected from the selected datasets. A window with “Read data?” appears. Now the user could choose to collect “all” or “endpoint specific” data.

1. Click OK to read all available data
1. Available experimental data appears on datamatrix.
1. **Double-click** on the cell displays metadata information for the observed data
2. **Click** on the X to close the window
Recap

• The first module, which introduces the target chemical, ensure correctness of the structure

• The second module shows that there is no protein binding alert for target chemical

• In the third module, you have found that the target chemical has positive skin sensitization data

• The positive experimental data could be due to skin metabolism

• The study continues with accounting for skin metabolism of target chemical (see next slides).
Recap

Parent

trans-2,cis-6-nonadienol
CAS# 28069-72-9

Protein binding alert
(Protein binding by OASIS)

No alert found

Profiling Result

No alert found
(no skin sensitization effect expected)

Profiling Result

GPMT
Strong sensitizer
(experimental data)

Skin metabolism

The OECD QSAR Toolbox for Grouping Chemicals into Categories
27.6.2013
Outlook

- Background
- Objectives
- The exercise

Workflow
- Input
- Profiling
- Endpoint

- Handling of skin metabolism
Handling of skin metabolism of target chemical

- Multiplying target chemical by skin metabolism simulator
- Multiplying target chemical by skin metabolism simulator is accomplished in section Input
- The generated metabolites appear in tree like form (see next screen shot)
1. Click on the SMILES of the target chemical and perform right click on it, then
2. Select Multiplication-Metabolism/Transformations
3. Select Skin metabolism simulator
4. Generated metabolites appear in tree like form
Handling of skin metabolism of target chemical
Visualization of modeling modes

• Two component modes are implemented:
 • **Set Mode** - all metabolites are analyzed as a package
 • **Individual Component Mode** - each metabolite is analyzed individually (see next screen shot)
Handling of skin metabolism of target chemical

Visualization of modeling modes

- **All Component Mode** – all metabolites are analyzed as a package.

- **Single Mode** – each metabolite is analyzed individually.

1. Click over the set as shown on 1
2. **All** component mode – select All (2)
3. **Single** component mode – select Single (3)
Outlook

- Background
- Objectives
- The exercise

- **Workflow**
 - Input
 - Profiling
 - Endpoint

- **Handling of skin metabolism of target chemical**
 - Profiling set of metabolites
Handling of skin metabolism of target chemical
Profiling set of metabolites

• This module identifies profilers of target chemical and its metabolites

• Protein binding profiles related to skin sensitization are applied on package of target and metabolites

• Profiling results of target and metabolites are illustrated in Single Component mode

• Click on “Profiling" to go to the required module

• Apply Protein binding profilers(see next screen shot)
Handling of skin metabolism of target chemical
Protein binding result of parent and metabolites

The profiling results indicate no protein binding alerts or target chemical. However, two of simulated metabolites exhibit interaction with proteins via two different protein binding mechanisms.

1. Go to Profiling
2. Check the profilers related to the target endpoints
3. Click Apply
Handling of skin metabolism of target chemical

Recap

• The profiling results indicates no protein binding for target chemical

• Two of simulated skin metabolites have positive protein binding alerts

• One of the reactive metabolites is used for further read across analysis

• The next two parts of the exercise will focus one of the reactive metabolites and find similar analogues of the reactive one (see next screenshot).
Outlook

• Background
• Objectives
• The exercise
• Workflow
 • Input
 • Profiling
 • Endpoint
 • Handling of skin metabolism of target chemical
 • Profiling set of metabolites
 • Focus of active metabolite
Handling of skin metabolism of target chemical
Focus of active metabolite

1. **Right click** over the active metabolite
2. **Select** Focus from the appeared menu

"Focus" functionality allows the selected metabolite to be used as post target representative of the target chemical.
Handling of skin metabolism of target chemical
Focus of active metabolite

The selected metabolite appears in a new data matrix.
Outlook

• Background
• Objectives
• The exercise

• **Workflow**
 • Input
 • Profiling
 • Endpoint

• **Handling of skin metabolism of target chemical**
 • Profiling set of metabolites
 • Focus of active metabolite
 • **Defining category for active metabolite**
Category Definition
Grouping methods

• The different grouping methods allow the user to group chemicals into chemical categories according to different measures of “similarity” so that within a category data gaps can be filled by read-across.

• Detailed information about grouping chemical (Chapter 4) could be found in document “Manual for Getting started” published on OECD website:

Basic guidance for category formation and assessment

Suitable categorization phases:

1. Structure-related profilers
2. Endpoint specific profilers (for sub-cat)
3. Additional structure-related profilers, if needed to eliminate dissimilar chemicals (to increase the consistency of category) (e.g. chemical elements)

Performing categorization:

1. The categorization phases should be applied successively
2. The application order of the phases depend on the specificity of the data gap filling
3. More categories of same Phase could be used in forming categories
4. Some of the phases could be skipped if consistency of category members is reached

Graphical illustration of suitable categorization phases is shown on next slide
Suitable Categorization/Assessment Phases

Phase I. Structure based

- US EPA Categorization
- OECD Categorization
- Organic functional group
- Structural similarity
- ECOSAR

Repeating Phase I due to Multifunctionality of chemicals

Phase II. Mechanism based

- DNA binding mechanism
- Protein binding mechanism
- Genotoxicity/carcinogenicity
- Cramer rules
- Verhaar rule
- Skin/eye irritation corrosion rules

Metabolism accounted for

Phase III. Eliminating dissimilar chemicals

Apply Phase I – for structural dissimilarity
Filter by test conditions – for Biological dissimilarity
Handling of skin metabolism of target chemical
Category definition for active metabolite

• In this exercise, the reactive metabolite is classified as: Aldehyde by US-EPA New chemical category (phase I)

• The identified Protein binding profiler of the reactive metabolite is: Michael addition >> a,b-unsaturated carbonyl compounds >> Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldehydes (phase II)

• In order to expand the initial group of identified analogues the US-EPA New chemical category is used for categorization purposes (phase I).

• Searching for similar analogues is accomplished using the two skin sensitization databases: Skin sensitization and Skin sensitization ECETOC
Handling of skin metabolism of target chemical
Defining US-EPA category

• The category **US-EPA New chemical category (strict)** is used

• **Strict** functionality means that the software will identify analogues having ONLY the categories of the target (i.e. aldehydes) and will exclude the analogues having any other categories

• **Select** US-EPA New Chemical category

• **Click** Define (see next screen shots)
Handling of skin metabolism of target chemical
Defining US-EPA category

1. **Highlight** “US-EPA New Chemical Categories” 2. **Click** Define 3. **Select** Strict 4. **Click** OK to confirm the category **Aldehydes (Acute toxicity)** defined by US-EPA category.
Handling of skin metabolism of target chemical
Defining US-EPA category

1. Click OK to confirm the name of the category
Handling of skin metabolism of target chemical Category analogues

• The Toolbox now identifies all chemicals corresponding to *Aldehydes* (*Acute toxicity*) by US-EPA listed in the skin sensitization databases.

• 56 analogues including the target chemical are identified; they form a mechanistic category named “*Aldehydes (Acute toxicity)*”, which will be used for further data gap filling.

• The experimental data for analogues in the category appears on datamatrix
Handling of skin metabolism of target chemical

Summary information for Analogues

The experimental results for the analogues appeared on datamatrix

Chemical statistic (1) presenting number of chemicals and the available experimental data
Recap

• In this case “US-EPA New-category Aldehydes(strict) is used for categorization purposes.

• The defined category consist of 56 analogues along with the target chemical

• The available experimental data for these 56 analogues have been collected from two skin sensitization databases.

• But before the user can proceed with the “Filling Data Gap” module, he/she should navigate through the endpoint tree and find the specific gap that will be filled in (in this case Human Health Hazards#Sensitisation#Skin#In Vivo).

• In this case we mixed assays and endpoints (see slides #62-64)
Outlook

• Background
• Objectives
• The exercise
• **Workflow**
 • Input
 • Profiling
 • Endpoint
 • **Handling of skin metabolism of target chemical**
 • Profiling set of metabolites
 • Focus of active metabolite
 • Category definition for active metabolite
 • **Data gap filling**
1. Click on the cell corresponding to “Sensitisation/Skin/In vivo” for the target chemical (active metabolite)
2. Select Read-across
3. Click Apply
Data gap filling for active metabolite

Scale definition

• Skin sensitisation is “qualitative” endpoint for which the results are presented with categorical data (for example: positive; negative; weak sensitizer; strong sensitizer; etc).

• Skin sensitisation potential of the chemicals came from different authors coded with different names (for example: data from John Moores University of Liverpool are: Strongly sensitizing, Moderately sensitizing etc.; data from European centre for Ecotoxicology and Toxicology of chemicals are: Positive, Negative, and Equivocal).

• The main purpose of the scales is to unify all data available in the Toolbox databases for a certain endpoint.

• The default scale for Skin Sensitisation is “Skin Sensitisation ECETOC”. It converts all skin data into: Positive, Negative, and Equivocal.
Data gap filling for active metabolite
Scale definition

1. In this case all endpoints (1) and assays (2) related to skin sensitization are taken into account.
2. Default scale is Skin sensitization II (ECETOC).
3. Click OK to enter data gap filling.
Data gap filling for active metabolite
Read-across

• The resulting plot is experimental results of all analogues (Y axis) according to a descriptor (X axis) with the default descriptor of log Kow (see next screen shot).
• The **RED** dot represents predicted results for the target chemical.
• The **BROWN** dots represent the experimental results available for the analogues that are used for the read-across.
• The **BLUE** dot represent the experimental results available for the analogues but not used for read-across.
Data gap filling for active metabolite
Read-across
Data gap filling for active metabolite
Subcategorization

• After the available data has been retrieved, the user can then further subcategorize the results according to the following endpoint-specific subcategorizations (phase II, slide #55):

 - Protein binding by Oasis v1.1.
 - Protein binding by OECD
 - Protein binding potency

• These steps are summarized in the next screen shots.
Data gap filling for active metabolite
Subcategorization 1: Protein binding by OASIS v.1.

1. Select filter data/subcategorize
2. Select Protein binding by OASIS v1.1.
Note all analogues are in the same category (3) as the target chemical, so no further action is required.
Data gap filling for active metabolite
Subcategorization 2: Protein binding by OECD

1. Open Select/filter data/Subcategorize 2. Select Protein binding by OECD 3. Green dots represent analogues having different Protein mechanism of interaction 4. Remove dissimilar chemicals
Data gap filling for active metabolite
Subcategorization 3: Protein binding potency

1. **Select** Protein binding potency
2. Green dots represent analogues belonging to different subcategories
3. **Remove** dissimilar chemicals
1. The predicted result is **positive**
2. **Accept** prediction
3. **Click OK**
4. **Return to matrix**

Data gap filling for active metabolite

Results after subcategorization

The OECD QSAR Toolbox for Grouping Chemicals into Categories

27.6.2013
Data gap filling for active metabolite
Read-across prediction

The read-across prediction result for metabolite appears on data matrix
Data gap filling for active metabolite
Interpreting Read-across

• In this example, all analogues have same protein binding alerts

• All analogues exhibit positive skin sensitization

• The same positive sensitising potential is therefore predicted for the target (i.e. active metabolite).

• The prediction of metabolite is further transferred to the parent chemical using Independent MOA (see next screen shots)
Outlook

- Background
- Objectives
- The exercise

Workflow
- Input
- Profiling
- Endpoint

- **Handling of skin metabolism of target chemical**
 - Profiling set of metabolites
 - Focus of active metabolite
 - Category definition for active metabolite
 - Data gap filling

- **Assigning prediction of active metabolite to parent**
Handling skin metabolism of target chemical
Assigning data to parent chemical

1. The read-across prediction for the metabolite is positive then 2. **Select** datamatrix of the target chemical: click over the node “[set] Skin metabolism simulator”
Handling skin metabolism of target chemical
Assigning data to parent chemical

1. Select cell corresponding to skin sensitization
2. Select Data Gap Filling

The OECD QSAR Toolbox for Grouping Chemicals into Categories
27.6.2013
Handling skin metabolism of target chemical
Assigning data to parent chemical

1. Check Independent MOA
2. Click Apply
Handling skin metabolism of target chemical
Assigning data to parent chemical

• The following actions (steps) are used for assigning data to parent chemical:
 - Accept prediction
 - Return to matrix

• Final prediction for the parent compound labeled as CI (Component based Independent mode) is positive (see next screen shot)
Handling skin metabolism of target chemical
Assigning data to parent chemical

The prediction for the metabolite is assigned to the parent chemical
Recap

• The target chemical **trans-2,cis-6-nonadienol** has been entered into the system.

• It has been profiled by Protein binding profilers; no protein binding has been found for target chemical.

• Positive experimental data has been retrieved for target chemical.

• Skin metabolism of target chemical is investigated. Two of simulated skin metabolites have positive protein binding alerts.

• These metabolites have similar protein binding alert: **α,β-unsaturated aldehydes**. One of the reactive metabolites is used for further read across analysis.

• No experimental data for the selected metabolite has been found, so the category of similar analogues has been defined.

• The initial group of analogues is defined by US-EPA New Chemical categories.

• 56 analogues including the target chemical are identified; they form a mechanistic category **“Aldehydes (Acute toxicity)”**, which will be used for gap filling.

• Read-across is used for data gap filling.

• Protein binding categories have been used for refining the initial category.

• Positive skin sensitization has been predicted for the active metabolite.

• Positive prediction for reactive metabolite has been transferred to the parent chemical using Independent MOA.
Outlook

• Background
• Objectives
• The exercise
• **Workflow**
 • Input
 • Profiling
 • Endpoint
 • Handling of skin metabolism of target chemical
 • **Report**
Report

• Remember the report module allows you to generate a report on the predictions performed with the Toolbox. This module contains predefined report templates as well as a template editor with which users can define their own user defined templates. The report can then be printed or saved in different formats.

• Generating the report is shown on next screenshots
1. Select prediction
2. Right Click and Select Report
Report

QSAR Toolbox prediction for single chemical using metabolism

(uses single component mode for handling of target chemical and its metabolites/transformation products)

The template of the current report is based on "GUIDANCE DOCUMENT ON THE VALIDATION OF (QUANTITATIVE) STRUCTURE-ACTIVITY RELATIONSHIPS MODELS" published by OECD (September, 2007) and "GUIDANCE ON INFORMATION REQUIREMENTS AND CHEMICAL SAFETY ASSESSMENT / CHAPTER R.6: QSARs AND GROUPING OF CHEMICALS" published by ECHA (May, 2008).

The report provides information about the target substance, chemical characteristics used for the prediction, the decision boundaries of the group of chemicals, and applicability.
1. Summary information for prediction
1. Predicted value

Positive
Applicability domain

The target chemical is “In domain”, because the prediction of active metabolite is “In domain”.

1. Applicability domain

The target substance of current prediction is IN DOMAIN, because the target substances in all individual predictions are in domain. Below is the list of domain classifications for the individual predictions (for details see the related prediction reports).

Individual component prediction no. 1:
The target substance is IN DOMAIN

4.4. Uncertainty of the prediction (OECD Principle 4):
Not provided by the user

4.5. Chemical and biological mechanisms (OECD Principle 5):
Profiling results for the target substance:
OECD HPV Chemical Categories
Not categorized
US-EPA New Chemical Categories
1. Individual component prediction