QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.1

Predicting acute aquatic toxicity to fish of 4methyl-2-nitroaniline taking into account tautomerism

- Background
- Objectives
- The exercise
- Workflow

Background

 This is a step-by-step presentation designed to take the user of the Toolbox through the workflow for filling data gap for acute aquatic toxicity to fish taking into account tautomerism of target chemical.

- Background
- Objectives
- The exercise
- Workflow

Objectives

- This presentation reviews a number of functionalities of the Toolbox:
 - Providing tautomeric set of target chemical
 - Identify analogues for a set of tautomers
 - Retrieve experimental results available for those analogues
 - Filling data gap by trend-analysis

- Background
- Objectives
- The exercise
- Workflow

The Exercise

- In this exercise we will predict *LC50* for fish: *P.promelas* for target chemical
- Set of simulated tautomers for the target chemical will be provided
- This prediction will be accomplished by collecting similar analogues presented with their tautomeric set
- The category will be defined using US-EPA New Chemical Categories
- Data gap will be filled by trend-analysis

- Background
- Objectives
- The exercise
- Workflow

Workflow

- As you know the Toolbox has 6 modules which are typically used in sequence:
 - Chemical Input
 - Profiling
 - Endpoint
 - Category Definition
 - Data Gap Filling
 - Report

- Background
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input

There are two ways for simulating tautomers of chemicals

- During the process of entering the structure into the system
- Simulating tautomersim of already entered structure

In order to accelerate the workflow all databases are preliminary tautomerized, calculated and profiled. The results are stored in the database.

See next screen shots

Chemical Input Input target chemical by CAS#

1. Click on CAS#; 2. Enter 89-62-3; 3. Select Tautomeric sets; 4. Click Search; 5. OK

Note: Tautomeric set functionality search tautomeric forms of entered chemical in previously tautomerized databases

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Chemical Input Target chemical identity

Target with its tautomeric forms are identified and loaded on data matrix. 1. **Double click** over the target structure displays target and its tautomeric forms

Chemical Input Implementation of Modeling modes

• **Component Mode All** – all tautomeric forms are analyzed in a package

Component Mode Single – each tautomeric form is analyzed individually

Different modes for visualization for the set of target and its tautomeric forms is implemented. A package of target and its tautomeric forms are used in further trend analysis.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

•

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Side-Bar to Profiling

 For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, US-EPA New chemical categories and clicking on "View" (see next screen shot).

Profiling Side-Bar to Profiling

QSAR Toolbox 3.1.0.21 [Do	Contract Participation		_ 0 <u>_ X</u>
• •			🕤 🖸 😣 🔧
QSAR TOOL 🖌 🛛 🗹			<u>A</u> bout <u>U</u> pdate
→ Input	Profiling Endpoin	int → Category Definition → Data Gap Filling → Report	
Profiling Profiling hemes		The Q	ECD QSAR Toolbox
4 1 2	US-EPA New Chemical Categories (Pred	redefined) - Profiling Scheme Browser	puping Chemicals
Apply New View Delete			by LMC, Bulgaria
	Advanced List with cat	tegories Textual description	
P ² Ving methods	US-EPA New Chemical Categories - Category	ry definition	
Select All Unselect All Invert About	Acrylamides		
Predefined	Acrylates/Methacrylates (Acute toxic Acrylates/Methacrylates (Chronic toxic)	(dty) Category: <u>Acid Chlorides</u> Environmental Toxicity	=)
Database Affiliation	- Aldehydes (Acute toxicity)	Definition This category includes cathood chlorides (P. C[-O]C) and cylifochlorides (P. S[-O]C) where P may be either eliphatic or acomption	
Inventory Affiliation	Aldehydes (Chronic toxicity)	Definition . This category includes carbony choices $(x \in [-0])$ and subcontainings $(x \in [-0])$ of white k may be called applicate of anomale. Toxicity is limited by the fact that this class of compounds by hydrolyzes and also probably if the optimization participation (way) is above a log	
DECD HPV Che nical Categories	Aliphatic Amines	Kow value of 8.1 has been assumed that these compounds need to be absorbed to be toxic therefore compounds with MWs > 1000 will probably	
US-EPA New Chemical Categories	Aluminum Compounds	be excluded in the future once this assumption is confirmed with toxicity information. However, toxicity information is needed to confirm this	
General in Chanistic	- Aminobenzothiazole Azo Dyes	assumption.	
eg BioHC half-life (Biowin)	Anhydrides, Carboxylic acid		
g primary (Biowin 4)	Anilines (Chronic toxicity)	Hazard Concerns. Acute toxicity for three members of this category are available and all have been shown to be moderately toxic to aquatic	
ig probability (Biowin 1)	Anionic Surfactants	organisms (i.e., acute toxicity values between 1 and 100 mg/L) benzoyl chloride, fish 96-h LC50 = 35.0 mg/L, an aromatic dicarboxyl dichloride, fish	
eg probability (Biowin 5)	Azides (Acute toxicity)	96-h LCS0 = 6.2 mg/L, and benzene subcohonde, hish $48-h LCS0 = 5.0 mg/L$. All of these tests have been done with the static method using	
Biodeg probability (Biowin 6)	- Benzotriazole-hindered phenols	normal concentrations. It is unclear just now acid chioroces are toxic to adjuate organisms. It is known that acid chioroces negative within the	
Biodeg probability (Biowin 7)	Benzotriazoles (Acute toxicity)	carboxytic subject and an H_{c} . It is not known if the toxic effect is the result of (1) absorption of the acid chronic and mydrolysis within the memory acid hydrolysis products are of low toxicity memory acid hydrolysis products are of low toxicity.	
Biodeg ultimate (Biowin 3)	Benzotriazoles (Chronic toxicity)	inclusione, or (2) the respiration of the hydrolysis. It is known that the carefornia state injusticity is produced at the hydrolysis produced at the hydrolysis produced at the hydrolysis produced at the hydrolysis in the hydrol	
DNA binding by OASIS V. 1. 1	···· Boron Compounds	Boundaries. There are no known lower boundaries. The upper boundaries will be based on K, and MW when enough information is obtained. In	
DPRA Cysteine peptide depletion	Cationic (quaternary ammonium) surfa	water	
DPRA Lysine peptide depletion	Cobait	will be recommended for terrestrial exposures. When the log K is > 8, testing will be requested until enough information is obtained to determine	
Hydrolysis half-life (Ka. pH 7)(Hydrowin)	···· Diazoniums (Acute toxicity)	whether these compounds will have no toxic effects at saturation. Generally, members of this category will have MWs of less than 1000 but testing of	
Hydrolysis half-life (Ka, pH 8)(Hydrowin)	Diazoniums (Chronic toxicity)	members with a MW > 1000 may be requested to confirm whether acid chlorides have to be absorbed to be toxic.	
Hydrolysis half-life (Kb, pH 7)(Hydrowin)	···· Dichlorobenzidine-based Pigments ···· Diisocvanates		
< III >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Dithiocarbamates (Acute toxicity)	General Testing Strategy. The testing strategy for acid chlorides will consist of two steps. (1) Hydrolysis as a function of pH at 25 C (40 CFR	
Metabolism/Transformations	Dithiocarbamates (Chronic toxicity)	796.3500) will be recommended. Depending on the outcome of this environmental fate testing and reassessment, (2) the aquatic base set of	
	Esters (Acute toxicity)	environmental toxicity tests will be recommended for aquatic exposures with the fish acute toxicity test done once or twice.	
Select All Unselect All Invert About	Esters (Chronic toxicity)		
Documented	Ethylene Glycol Ethers	Chronic toxicity testing for aquatic organisms include: the fish early life state toxicity test, the daphnid partial life cycle toxicity test and the algal toxicity	
Observed Mammalian metabolism	Hindered Amines	test.	
Observed Rat In vivo metabolism	Imides (Acute toxicity)	The terrestrial base set of environmental toxicity tests (i.e., the early seeding growth test, the earlyworm anyte toxicity test and the soil microbial	
Observed Rat Liver S9 metabolism	Imides (Chronic toxicity)	commute bioass and will be recommended for terrestrial exposures. Chronic toxicity testing for terrestrial organisms include: the plant tuble life cycle	
Simulated	Lanthanides or Rare Earth Metals	- test, the plant uptake test, and the soil microbial community bioassay.	
Autoxidation simulator	inclusion of galiles		-

1. Highlight the profiler 2. Click View

Profiling Side-Bar to Profiling

Profiling

Profiling the set of target and tautomers

- The following primary profilers relevant to the aquatic toxicity are used in this example(see next screenshot):
 - OECD
 - US-EPA New chemical category
 - Aquatic toxicity classification by ECOSAR
 - Acute aquatic toxicity MOA by OASIS
 - Acute aquatic toxicity classification by Verhaar
 - Organic function groups all four profilers are used in the assessment
- Select the "Profiling methods" related to the target endpoint by clicking on the box next to the profilers name.
- This selects (a green check mark appears) or deselects(green check disappears) profilers.

Profiling Profiling the set of target and tautomers

QSAR Toolbox 3.1.0.21 [Document]		
	Profiling Endpoint Category Definition Data Gap Filling Report	
Profiling 2 Schemes	Profile statistic	
	Select profiles Report	Create profiler Stop All chemicals
Appiy New View Delete	Stack mode	s 🔄 Stacked to 100% 🖉 Group by category 🗧 🔚 Save to smi 🏻 🖨 Print 🗣 Add in new doc 🗣 Ad
Profiling methods	Filter endpoint tree 1 [target] Profiles in use	Chemical groups
Select All Unselect All Invert About	[5] [1] Acute aquatic toxicity MOA by (
Carcinogenicity (genotox and nongenotox) alerts b DNA alerts for ANES, NN and CA by OASIS v. 1.1 Eye irritation/corrosion Exclusion rules by BfR Eye irritation/corrosion Indusion rules by BfR	Structure	AS# 89-62- CAS# 89-62- CAS# 89-62- CAS# 89-62- CAS# 89-62- CAS# 89-63-
in vitro mutagenicity (Ames test) alerts by ISS	Predefined # ICategory	
Keratinocyte gene expression	US-EPA New Chemical Categories Anilines (Acute toxi	1 20.00 by by by by
Oncologic Primary Classification	Not categorize	
Protein binding alerts for skin sensitization by OASI	Class 2 (less) 3	1 20.00
Skin irritation/corrosion Exclusion rules by BfR	Acute aquatic toxicity classification by Verhaar Class 3 (unstant)	3 60.00
Skin irritation/corrosion Inclusion rul	Class 5 (Not possil	
Empiric Chemical elements	Acute aquatic toxicity MOA by OASIS	· · · · · · · · · · · · · · · · · · ·
Groups of elements	Reactive Copy Acute aqu	atic toxicity MOA by OASIS
upinski Rule Oasis	Aquatic toxicity classification by ECOSAR	2D representations of the
✓ Organic functional groups		structures in each category
Organic functional groups (US EPA)	Allyl Component Profile Statis	Structures in each category
4 Organic functional groups, Norbert Haider (checking	Aniline	
Toxicological	Aryl Cycle conjuga	
Repeated dose (HESS)	Cycloalkene 4	
4 III >	Organic functional groups Ketimine Basesurface parcetir	Reactive unspecified
Metabolism/Transformations	Methyl	
Select All Unselect All Invert About		
- Documented		Number of tautomore
Observed Mammalian metabolism	by OASIS categories of	
Observed Microbial metabolism		in a category bin
Observed Rat In vivo metabolism	tautomers in the set	
Simulated	Organic functional groups (nested)	
Autoxidation simulator	Nitro aliohatic cono	
1. Check the profi	lers related to acute aquatic toxicity as mention on	slide #20

- 2. Click Apply
- 3. Perform **Right click** over the cell with profiling results and
- 4. Select Component profile statistic

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint

Endpoint

- "Endpoint" refer to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox database.
- Data gathering can be executed in a global fashion (i.e., collecting all data of all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).
- In this example, we limit our data gathering to the common aquatic toxicity endpoints from databases containing aquatic toxicity data - Aquatic ECETOC; Aquatic OASIS; Aquatic Japan MoE; Aquatic US-EPA ECOTOX
- Data for target chemical and its simulated tautomeric forms is extracted from selected databases if available

Endpoint

- For this example, the following database are relevant to the aquatic toxicity (see next screen shot):
 - ✓ Aquatic ECETOC
 - ✓ Aquatic Japan MoE
 - ✓ Aquatic OASIS
 - ✓ Aquatic US-EPA ECOTOX

Endpoint Gather data

- **1. Select** databases related to the target endpoint by adding a green check in the box before the database name.
- 2. Click Gather

Endpoint

Recap

- You have entered the target chemical
- You have simulate the tautomeric forms of target chemical
- You have gather data if available and found experimental data for one of tautomeric forms (in our case for entered structure).
- Now you are ready to continue with next step of the workflow "Category definition".

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Category definition

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition.

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity".
- Detailed information about grouping chemical (Chapter 4) could be found in document "Manual for Getting started" published on OECD website:

http://www.oecd.org/chemicalsafety/riskassessment/theoecdqsartoolbox.htm

Basic guidance for category formation and assessment

Suitable categorization phases:

- 1. Structure-related profilers
- 2. Endpoint specific profilers (for sub-cat)
- 3. Additional structure-related profilers, if needed to eliminate dissimilar chemicals (to increase the consistency of category) (e.g. chemical elements)

Performing categorization:

- 1. The categorization phases should be applied successively
- 2. The application order of the phases depend on the specificity of the data gap filling
- 3. More categories of same Phase could be used in forming categories
- 4. Some of the phases could be skipped if consistency of category members is reached

Graphical illustration of suitable categorization phases is shown on next slide

The OECD QSAR Toolbox for Grouping Chemicals into Categories

QSAR TOOLEOX

Suitable Categorization/Assessment Phases*

Phase I. Structure based

- US EPA Categorization
- OECD Categorization
- Organic functional group
- Structural similarity
- ECOSAR

Repeating Phase I due to Multifunctionality of chemicals

Phase II. Mechanism based

- DNA binding mechanism
- Protein binding mechanism
- Genotoxicity/carcinogenicity
- Cramer rules
- Verhaar rule
- Skin/eye irritation corrosion rules

Metabolism accounted for

Phase III. Eliminating dissimilar chemicals

Apply Phase I – for structural dissimilarity Filter by test conditions – for Biological dissimilarity Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

Subcategorization Endpoint Specific

Category Definition Grouping methods

- For this example, specific classifications of target and its tautomers are identified by the following profilers: US-EPA, MOA of action and EcoSAR (phase I)
- For this example analogues identified by US-EPA New chemicals category are used for further data gap filling
- Subsequent search of analogues is applied over the set of tautomers having same categories as those of the target tautomeric set

Category definition is a tool for grouping chemicals, which allows to group chemicals based on different measures of "similarity". For more details see tutorials posted on LMC and OECD website:

http://www.oecd.org/env/ehs/risk-assessment/theoecdqsartoolbox.htm

http://superhosting.oasis-lmc.org/products/software/toolbox/toolbox-support.aspx

Also we strongly recommend training exercises. For more details see:

http://www.oecd.org/env/ehs/risk-assessment/theoecdqsartoolbox.htm

Category Definition Side-bar of US-EPA New chemical categories

- US-EPA has been used by the U.S. Environmental Protection Agency to predict the aquatic toxicity of new industrial chemicals in the absence of test data
- US-EPA include classes of chemicals for which sufficient regulatory history has been accumulated
- "Classification by US-EPA" in the Toolbox is used for grouping of chemicals by structural similarity which may have mechanistic meaning. Experience has shown US-EPA to be a robust profiler which makes it a logical choice in an initial profiling scheme.

Category Definition Defining US-EPA New Chemical category

- 1. Highlight "US-EPA New Chemical Categories " 2. Click Define
- 3. **Select** "Not categorized"
- 4. Click arrow down to remove selected category

Category Definition Defining US-EPA New Chemical category

QSAR Toolbox 3.1.0.21 [Document_1]						
QSAR TOOLBOX	→ Finput	Final Profiling	► Endpoint	Category Definition	01 01 Data G	
Categorize	Cļustering Delete	ete X D <u>e</u> lete All				US-EPA New Chemical Categories
Grouping methods Predefined Database Affiliation Inventory Affiliation OECD HPV Chemical Categories Substance Type US-EPA New Chemical Categories General Mechanistic Biodeg probability (Biowin 1) Biodeg probability (Biowin 1) Biodeg probability (Biowin 5) Biodeg probability (Biowin 6) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg not probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg not probability (Biowin 6) Biodeg not probability (Biowin 7) Biodeg not probability (Biowin	Filter endpoint tree Filter endpoint tree Structure Substance Identity Physical Chemical P Environmental Fate a Ecotoxicological Infor Human Health Hazar Profile Predefined Substance Type US-EPA New Ch Endpoint Specific Acute aquatic to	roperties and Transport rmation ds eemical Categ xicity classific	1 [target] [5] [1] NH2 NH2 CH3 Discrete chemical Anilines (Acute toxicity) Not categorized Class 2 (less inert com Class 5 (Not possible to Basesurface narcotics Phenols and Anilines Phenols and Anilines	P	1	Anilines (Acute toxicity) Anilines (Acute toxicity) All profiles Acid Chlorides Acrylates/Methacrylates (Acute toxicity) Acrylates/Methacrylates (Chronic toxicity) Aldehydes (Chronic toxicity) Combine profiles logically Combine
Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 Protein binding by OASIS v1.1 Protein binding by OECD	Aquatic toxicity ⊕Empiric	classification b	Anilines (Unhindered) Neutral Organics			

Category "Anilines" is used for further categorization Click OK
Category Definition Defining US-EPA New Chemical category

QSAR Toolbox 3.1.0.21 [Document]		CONTRACTOR OF THE OWNER OWNER OF THE OWNER	to the second second second second	
				o 🖸 🕄 🔧
QSAR TOOLBOX	► Input ► Profiling	Endpoint Category Definiti	ĭónoó Ion → Data Gap Filling → Report	<u>A</u> bout <u>U</u> pdate
Categorize	Clustering Delete Delete All			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC. Bulgaria
Grouping methods Predefined Database Affiliation Inventory Affiliation OECD HPV Chemical Categories Substance Type US-EPA New Chemical Categories General Mechanistic Biodeg probability (Biowin 1) Biodeg probability (Biowin 2) Biodeg probability (Biowin 3) Biodeg probability (Biowin 5) Biodeg probability (Biowin 5) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 3) DNA binding by OASIS v.1.1 DNA binding by OASIS v.1.1 DNA binding by OASIS v.1.1 DRA binding the fail-fife (Ka, pH 3)(Hydrow Hydrolysis half-life (Ka), pH 3)(Hydrow Hydrolysis ha	Filter endpoint tree Structure E E: Substance Identity E: Physical Chemical Properties E: Environmental Fate and Transp E: Cotoxicological Information E: Human Health Hazards	1 [target] [5] [1] NH2 NH2 CH3 ort (1/3) M. 24.7 mg/L, 24.8/ Warning You have Do you v	e selected diffe want to continu Yes No Cancel	

A notification message informs you that you have selected different categories from those of the target.

1. Select Yes

Category Definition Defining US-EPA New Chemical category

QSAR Toolbox 3.1.0.21 [Document]		And a second sec	Toronto a serie dan persona da la	and - Development and	
QSAR TOOLBOX	⑦ (1)	Ê H	01010		ු ල 😣 🔧 <u>A</u> bout Update
Categorize Categorize Define Subcategorize Combine Clusteri Fredefined Database Affiliation Drwentory Affiliation Drwentory Affiliation COUPY Chemical Categories Substance Type US-EPA New Chemical Categories Substance Type US-EPA New Chemical Categories General Mechanistic Biodeg probability (Biowin 1) Biodeg probability (Biowin 5) Biodeg probability (Biowin 5) Biodeg probability (Biowin 7) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 6) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg probability (Biowin 7) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg probability (Bio	Imput Profiling Imput Profiling Imput Profiling Imput Delete Imput Imput Imput Delete Imput Delete Imput Delete Imput Delete Imput Delete Imput Delete Imput De	Image: tempoint Image: tempoint	Ion > Data Gap Filling	Report	 Control Control C
DRRA Cysteine peptide depletion DRRA Lysne peptide depletion Estrogen Receptor Binding Hydrolysis half-life (%a, pH 3)(Hydrowi Hydrolysis half-life (%b, pH 7)(Hydrowi Hydrolysis half-life (%b, pH	1				

Category Definition Analogues

- The Toolbox now identifies all chemicals represented as tautomeric sets corresponding to the US-EPA classification of "Anilines" which are listed in the databases selected under "Endpoint".
- 314 analogues(tautomeric sets) are identified. Along with the target they form a category (Anilines) which can be used for data gap filling.
- The name of the category appear in the "Defined Categories" window, along with the number of substances belonging to the category.

[314] Anilines (Acute toxicity) (US-EPA New Chemical Categories)

Category Definition Read data for Analogues

- The Toolbox automatically request the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

- In this example, since only databases that contain information for ecotoxicological endpoints are selected, both options give the same results.
- As the Toolbox must search the database, this may take some time.

Category Definition Read data for Analogues

Due to overlap between the Toolbox databases for intersecting chemicals the same data may be found simultaneously. Data redundancies are identified and the user has the opportunity to select either a single data value or all data values.

Repeated values for: 748 data-points, 255 groups, 115 chemicals								
Data points								
	Endpoint	CAS	Structure	Value	Age Select one			
	NOEC	95-51-2	Ľ,	3.2 mg/L				
	NOEC	95-51-2	¥,N→Q>	3.2 mg/L	Invert			
	NOEC	95-80-7	à	1 mg/L	Check All			
	NOEC	95-80-7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 mg/L				
	NOEC	106-49-0	Ä	3.1 mg/L				
	NOEC	106-49-0	Y.	3.1 mg/L				
	NOEC	95-64-7	Å	2.9 mg/L	∕ ок			
	NOEC	95-64-7	***-Q	2.9 mg/L				
•			••	· ·				

- **1. Click** Select one and then
- 2. Click OK

QSAR TOOLEOX

Category Definition Summary information for Analogues

QSAR Toolbox 3.1.0.21 [Document]	-		_	Charles and the state	and the second distance of	Conceptual States			221		a x
QSAR TOOLEOX	→ Input	► Profiling	Endpoint ►	Category Definition	01010 01 1 10100 • Data Gap Filling	► P Report				ලි (<u>A</u> bou	🖻 😣 🔧 t Update
Categorize	D Delete	elete X Dglete All								The OECD QSAI for Grouping Ch into Categories Developed by L	R Toolbox iemicals .MC, Bulgaria
Grouping methods	Filter endpoint tree		1 [target]	2	3	4	5	6	7	8	9
Predefined Database Affiliation Inventory Affiliation OECD HPV Chemical Categories Substance Type US-EPA New Chemical Categories	Structure								12] [T] Han-Ooo	[5] [1] NH ₂	, תן ניז_ ⊶∼
General Mechanistic Biodeg BioHC half-life (Biowin) Biodeg primary (Biowin 4) Biodeg probability (Biowin 1)		entity mical Properties I Fate and Transport									
Biodeg probability (Biowin 2) Biodeg probability (Biowin 5) Biodeg probability (Biowin 6) Biodeg probability (Biowin 7) Biodeg ultimate (Biowin 3)	⊞Ecotoxicologi ⊞Human Health	ical Inform (310/478 h Hazards	34) M: 24.7 mg/L, 24.8(.	M: 0.0063 mg/L,	0 M: 0.032 mg/L, 0.0	M: 0.005 mg/L, 0.0	. M: 0.52 mg/L, 0.81	. M: 0.011 mg/L, 0.0	M: 0.014 mg/L, 0.0	M: 0.2 mg/L, 0.62 .	M: 0.09
DNA binding by OASIS v. 1.1 DNA binding by OASIS v. 1.1 DPRA Cysteine peptide depletion DPRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 3)(Hydrowi Hydrolysis half-life (Ka, pH 3)(Hydrowi Hydrolysis half-life (Kb, pH 7)(Hydrowi Hydrolysis half-life (Kb, pH 7)(Hydrowi		Availat as taut	ole aqua comeric s	tic expe sets ap	erimental pears on	data foi datamai	r the ana trix.	alogues	represer	ited	
Hydrolysis half-life (pH 6.5-7.4) Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 Protein binding by OASIS v1.1 Protein binding by OASIC v1.1											
Defined Categories Document [314] Anilines (Acute toxicity) (US-EPA N	e										

Recap

- You have identified a category ("anilines") with the "US-EPA New Chemical Categories" profiler for the target chemical 4methyl-2-nitroaniline and its tautomeric forms
- The available experimental results for these 314 analogues represented as tautomeric sets have been collected from the selected databases (Aquatic ECETOC, Aquatic Japan MoE, Aquatic USEPA ECOTOX, and Aquatic OASIS).
- But before the user can proceed with the "Filling Data Gap" module, he/she should navigate through the endpoint tree and find the specific gap that will be filled.

Category Definition Navigation through the endpoint tree

- The user can navigate through the data tree by opening (or closing) the nodes of the tree.
- The data tree is extensive but logically constructed; it can be mastered with a practice.
- In this example, the "96 h LC50 Mortality for *Pimephales* promelas" is the target endpoint.
- You can navigate through the endpoint tree by typing the species "*Pimephales promelas*" in the "Filter endpoint tree..." box and double click on Aquatic Toxicity, Mortality, LC50, 96 h, Animalia, etc to *Pimephales promelas -* the specific endpoint (see next screenshot)

Category Definition Navigation through the endpoint tree

QSAR Toolbox 3.1.0.21 [Document]		Contraction of the local division of the loc	And in case of the second s	section description		
			91010			🕭 🙆 😒
QSAR TOOLBOX			TÓ10Ó			<u>A</u> bout <u>U</u> pdate
	Input Profiling	Endpoint Categor	y Definition Data Gap Filling	▶ Report		
Categorize	Delete					The OECD QSAR Toolbox
🚥 👗 🐸 i	∞ × × 1					into Categories
Define Subcategorize Combine Clus	stering <u>D</u> elete D <u>e</u> lete All					Developed by LMC, Bulgari
Grouping methods	Pimephales promelas	1 [target]	2 3	4	5 6	7 8
Predefined		151 11			<u>ія</u> п п	[2] M [5] M
- Database Affiliation		NH2	NH ₂	ପ୍ ପ୍	CH3 NH2	NH ₂
- Inventory Affiliation	Structure					
OECD HPV Chemical Categories	Structure		() H ₂ N-	$\langle \bigcirc \rangle$ $\neg \bigcirc /$		$2 \leq 0 \leq 2$
US-EPA New Chemical Categories			CH3	NH2	NH2	CH3 NH-
General Mechanistic						1112
Biodeg BioHC half-life (Biowin) 😑	-Aquatic Toxicity					
Biodeg primary (Biowin 4)	– ⊞Behavior	(4/17)	M: 112(101;124) m			
Biodeg probability (Biowin 1)	- ⊞Biochemistry	(1/2)				
Biodeg probability (Biowin 2)	- Development	(1/5)	M: 23.6 mg/L, >23			
Biodeg probability (Biowin 5)	H⊞Growth	(2/19)	M: 61.1(50.7;72.1)	M: 0.01 mg/L, 0.01		
Biodeg probability (Biowin 7)		(1/1)	M: 2.25:24.7 mg/L			
Biodeg ultimate (Biowin 3)		(1/1)				
- DNA binding by OASIS v.1.1	En formone(s)	(1/1)				
- DNA binding by OECD		(1/2)				
 DPRA Cysteine peptide depletion DPRA Lucino and idealation 	H-Mortality					
Estrogen Receptor Binding	-EEC50	(4/6)		M: 10.8 mg/L, 9.37		
Hydrolysis half-life (Ka, pH 7)(Hydrowi	-⊞LC01	(1/1)		M: 0.215(0;0.425)		
Hydrolysis half-life (Ka, pH 8)(Hydrowi	-⊞LC16	(1/4)		M: 0.3 mg/L, 7.2 m		
 Hydrolysis half-life (Kb, pH 7)(Hydrowi 	-=LC50					
Hydrolysis half-life (Kb, pH 8)(Hydrowi		(1/1)				
Hydrolysis half-life (pH 6.5-7.4)	HT3h	(1/1)				
Ionization at $pH = 1$		(1/1)				
Ionization at pH = 7.4		(1/1)				
- Ionization at pH = 9		(1/1)	M. 100-100	M- 0 02/0 55 0 525		
Protein binding by OASIS v1.1	H±124 h	(12/18)	IVI: 100;180 mg/L, >	WI: 9.03(8.55;9.53)	·	
Protein binding by OECD	-⊞48 h		M: 65 mg/L, >135;	M: 8.88(8.36;9.43)		
+ III +	-⊞72 h	2	M: ≈135 mg/L			
Defined Categories	- ⊟ 96 h	4				
a Document	Animalia					
[314] Anilines (Acute toxicity) (US-EPA Ner	Chordata(Vertebrates)					
	Pimenhales prom	e/a 73/198) M: 24.7 mg/L. 2	4.8(M: 107 mg/L, 75.5(M: 5.7	ma/L. 5.81(5 M: 7.58 ma/L 6.99(M: 1.44E3 mg/L. 1 M: 158 mg/	L. 171(1
		in a roup in zith night, z				

Type "Pimephales promelas" in the filter box, then press Enter
 Open the tree to the target endpoint by single left click on the ⊞ sign

Recap

- You have now retrieved the available experimental data on aquatic toxicity for 314 analogue chemicals of target and its tautomeric forms classified as "anilines" by the "US-EPA New Chemical Categories" profiler.
- You have identified the target endpoint of "96 h LC50 Mortality for *Pimephales promelas*".
- There is an experimental data for the investigated endpoint, in our exercise we will try to reproduce the experimental data taking into account tautomeric forms of the target
- You are ready to fill in the data gap so click on "Data Gap Filling" (see next screen shot).

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Category definition
 - Data Gap Filling

Data Gap Filling Apply Trend analysis

QSAR Toolbox 3.1.0.21 [Document]			0.000	Description			Characterization				
		<u>CD</u>	A		01010						5 😳 😵 🔧
QSAR TOOLBOX			U		10100						<u>A</u> bout <u>U</u> pdate
2	▶ Input	► Profiling	▶ Endpoint	Category Defin	Data Gap Fillin	g FReport					
										The O for Gro	ECD QSAR Toolbox ouping Chemicals
										into C	ategories
	c					ъг.		-)(Develo	oped by LMC, Bulgaria
Data Gap Filling Method	Pimephales p	promelas		1 [target]	2	3	4	5	6	7	8 *
Read-cross				[5] [1] NH2	[1] [1] NH ₂		[1] [1] ci	[a] [1] [a] [1]	[1] [1] NH2	[2] [1]	[5] [1] _{NH2}
O Trend analysis	Struct	ure									\sim
Q)SAR n Disks	Sude	ure			$ \langle O \rangle$	H ₂ N-()	" ¥		\square	=	\geq
Target Ender				CH3			NH2	NH2	CH3		NH ₂
Francisco Information Aquatic Tatality		—⊞1 h	(1/1)								
Mortality LC50 96 h Animalia		—⊞3 h	(1/1)								
Chordata(Vertebrates) Actinopterygii(Fish) Pimephales promelas		—⊞6 h	(1/1)								
		-⊞12 h	(1/1)		M. 100-100 1 ->		M: 0.02/0.55-0.52)				
		-±124 b	(12/18)		M: 100;180 mg/L, >		IVI: 9.03(6.55;9.53)				
		±-140 n ≖72 h	(11/15)			here is an	experime	ntal data f	or the tar	aet 📙	
		-==196 h	(3/3)		1 1		to monimodu	co it tokin	a into aco	gee,	
		Lanimalia			-{ ▪ }- ₩	e will try	to reprodu	се п такіп	g into acc	ount –	
		Chordata(Vertebrate	s)		ta	utomeris	m (to chec	k experim	iental data	a) 📃	
		L_Actinopterygii(Fis	h)				-	-			
		Pimephales pro	melas (73/198	M: 24.7 mg/L, 24.8(.		M: 5.7 mg/L, 5.81(5	M: 7.58 mg/L, 6.99(. M: 1.44E3 mg/L, 1	. M: 158 mg/L, 171(1.		
		-⊞7 Days	(1/1)		M: 60.2(53.4;67.9)						
		–⊞21 Days	(1/1)				M: 0.41(0.33;0.7) m.				
			(1/4)		M: 23.2 mg/L - 2.36		M: 0.034 mg/L, 9 mg	-			
			(2/4)		Wi. 23.2 Hig/E, 2.30	•	M: 0.0016 mg/L, 0.0				
		JL02L	(2/14)				·····g·-, ····				
		MATC	(2/5		M: 19 mg/L, <2.36		M: 0.0014 mg/L, 0				
	-E	INOEC	(2/4)		M: 15.7 mg/L, 2.1		M: 0.02 mg/L, 0.02				
	-E	INOEL	(1/3)				M: 0.0011 mg/L, 0				
		ONR-LETH	(2/2)								

1. Highlight the endpoint box corresponding to *Pimephales promelas*/LC50/96h under the target chemical.

- **2. Select** Trend analysis
- 3. Click Apply

Visualization of members of chemical sets is possible when **click** on 1. Visual options, then **2. Select** Show all members of chemical sets

All observed data for chemicals in tautomeric sets could be used in trend analysis when 1. **Open** Calculation options, then 2. **Select** Data usage and 3. **Select** All. Finally 4. **Click** OK

All members of tautomeric sets are displayed on the graph and all experimental data is taken into account.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Side-Bar of Subcategorisation

- Remember in the Toolbox, a category retrieved for tautomeric set refers to a group of chemicals with its tautomeric forms which have same profiling result according to one of the profilers listed in the module "Profiling".
- Subcategorisation refers to the process of applying additional profilers to the previously defined category; subcategorization procedure can be applied on:
 - **Single chemical** eliminate chemicals having different categories than those of the target
 - Set of tautomers eliminate tautomeric sets as a whole having different categories than those of the target tautomeric set
 - **Tautomers within tautomeric set** eliminate specific tautomers within tautomeric set, which have categories different than those of the target.
- Graphical illustration of subcategorization procedure is given on next three slides

Data Gap Filling Side-Bar of Subcategorisation Elimination of single chemical

Data Gap Filling Side-Bar of Subcategorisation Eliminating set of tautomers

Features of the target tautomeric set: S_T

Features of analogues (as tautomeric sets): S_A

ж

Repor

Refinement of category (Sub-categorization)

Analogue as tautomeric set has different features of the target:

QSAR TOOLBOX

Data Gap Filling Side-Bar of Subcategorisation Eliminating tautomers from a tautomeric sets

Features of the target tautomeric set: S_{T}

Features of analogues (as tautomeric sets): $S_A($ XYZ

Refinement of category (Sub-categorization)

Tautomers within tautomeric sets have different features of the target:

Tautomeric set of Tautomeric set of analogue target X $\mathbf{S}_{A} \neq \mathbf{S}_{T}$

ХУ

Data Gap Filling Side-Bar of Subcategorisation

• In this example, the following subcategorizations are applied in order to eliminate dissimilar tautomeric sets:

- <u>Substance type</u>

The categorisation based on substance type allows keeping among the analogues only those that are of the same chemical type: discrete chemicals, mixtures, polymers, inorganics, organometalics. The current target represented as tautomeric set include discrete chemicals only. Hence the analogues (tautomeric sets) should also be discrete chemicals.

- Aquatic toxicity classification by ECOSAR

The categorization based on mode of action identifies analogues (in this case tautomeric sets) having the same mode of action as the target (i.e phenols and anilines). The analogues (tautomeric sets) having different categories should be eliminated.

Cont'd on next slide

Data Gap Filling Side-Bar of Subcategorisation

- In this example, the following subcategorizations is applied in order to eliminate dissimilar tautomeric sets
 - Chemical elements

The categorisation based on Chemical elements allows keeping among the analogues (tautomeric sets) only those that have same chemical elements as the target tautomeric sets.

Subcategorisation steps are demonstrated on the next 4 screen shots.

Data Gap Filling Subcategorisation by Substance type

1.**Click** Subcategorize 2. **Select** Substance type 3. **Click** Remove to eliminate dissimilar tautomeric sets (the whole set is removed)

Data Gap Filling Result of Subcategorisation by Substance type

Data Gap Filling

Subcategorisation by Aquatic toxicity classification by ECOSAR

Click Subcategorize 2. Select Aquatic toxicity classification by ECOSAR
 Click Remove to eliminate dissimilar tautomeric sets (the whole set is removed)

Data Gap Filling Result of Subcategorisation by Aquatic toxicity classification by ECOSAR

Data Gap Filling Subcategorisation by Chemical elements

1. Select Chemical elements

2. Click Remove to eliminate dissimilar tautomeric sets (the whole set is removed)

Data Gap Filling Result of Subcategorisation by Chemical elements

Data Gap Filling Side-Bar of Subcategorisation

The last subcategorisation procedure eliminates unstable tautomeric forms from given tautomeric sets. This elimination is possible with respect to

- <u>Tautomers unstable profiler</u>

The categorisation based on Tautomers unstable allows keeping among the set of analogues only those thautomeric forms that are stable. For toxic effects conditioned by less specific interactions (such as mortality, growth inhibition, immobilization, etc.) the stable tautomeric forms appear to be the dominant toxicants. The tautomeric sets of target chemical and analogues include stable and unstable tautomeric forms. Based on the above recommendation the set of analogues and the target should contain only stable tautomeric forms. In this respect filtering the tautomeric sets should be applied. ("Apply filter option" should be selected)

See next two slides

Data Gap Filling Subcategorization by Tautomers unstable

1. Select Tautomers unstable profiler

In this case both tautomeric sets of target and analogues have same unstable tautomeric forms. The user should manually select unstable tautomeric forms in order to remove them, because from the system's point of view all labels are equal and the system cannot prefer the label "stable" to other (unstable ones). (see next slide)

2. Check Apply as filter

Data Gap Filling Subcategorization by Tautomers unstable

Hold Ctrl button and select unstable forms from the target tautomeric set, then the system automatically will select unstable tautomeric forms from analogues sets
 Click Remove to eliminate dissimilar tautomers from tautomeric sets

Data Gap Filling Result of Subcategorisation by Tautomers unstable

The OECD QSAR Toolbox for Grouping Chemicals into Categories

QSAR TOOLEOX

Data Gap Filling Result

Data Gap Filling Cumulated frequency

1. 95% of residuals are in the range of experimental error

Data Gap Filling Statistics

1. Coefficient of determination is high

Data Gap Filling

Summary on implementation of tautomers in trend analysis

- For toxic effects conditioned by less specific interactions (such as mortality, growth inhibition, immobilization, etc.) the stable tautomeric forms appear to be the dominant toxicants.
- Recommendation: to use the most stable tautomers for representation of the chemicals
Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Category definition
 - Data Gap Filling
 - Report

The OECD QSAR Toolbox for Grouping Chemicals into Categories

QSAR Toolbox 3.1.0.21 [Document]		The second second second	And the second second second						X
	Final Frontiling → En	dpoint Category Definition	01010 10100 ▶ Data Gap Filling	► Preport				ලි 🤄 <u>A</u> bout	3 🐼 🔧 : Update
Filing 9 Agoly								The OECD QSAR for Grouping Chu into Categories Developed by LM	R Toolbox emicals MC, Bulgaria
Data Gap Filling Method	Filter endpoint tree	1 [targ	et]	2	3	4	5	6	7 ^
◎ Read-across		[5] [T	NH2	[1] [T] _{NH2}		[1] [T] ci	[9] [T] CH₃	[1] [T] NH2	[2] [7]
Trend analysis	Structure		°						H:N
Q)SAR models	ondetare		6" V CH3	\bigcirc	H ₂ N-O	NH2		СНа	
Target Endpoint	Cyprinella lu	rensis (1/1)							
Ecotoxicological Information Aquatic Toxicity Mortality LC50 96 h Animalia Chordata(Vertebrates) Actinopterygii(Fish) Pimephales	Cyprinodon	ariegatus (1/1)							
promelas	Cyprinus ca	pio (2/2)							
	Danio rerio	(9/20)		M: 32;33 mg/L, 57	M: 5.23 mg/L	M: 8.59 mg/L, 8.5(7			
	Esox lucius	(2/2)							
	Esox masqu	nongy (1/1)							_
		1/1) (1/1)							
		ctatus (9/22)							
	Jordanella fl	oridae (2/2)							
	Lates calca	fer (1/3)			L				
	Lepomis cya	nellus (1/1)		Сору					
	Lepomis ma	prochirus (15/35)	1	Explain					
	Leuciscus id	us (4/5)	[Delete prediction					
	Morone saxa	tilis (4/8)		Display pre	n				
	Oncorhynch	s kisutch (1/3)		Explain prec 2					
	Oncorhynch	s mykiss (18/43)				M: 1.94 mg/L, 2.4(1			
	— Oryzias latip	es (27/31)		ait predict	3 mg/L	M: 11 mg/L	M: 912(797;1.04E3)	M: 120 mg/L	M: 3.9
	Perca flaves	cens (2/4)		Report		M: 2 1/1 0 1 0)			
	Perca fluvia		7 mg/L 24 8/20 6-1	UCLID5	7 mg/l 5 81/5	M: 3.1(1.9,4.9) mg/L	M: 1.44E3 mg/L_1	M: 158 mg/L 171/1	
	- Pimephales	promelas (73/199) <mark>T: 15</mark>	.5(4.48;53.7) mg/L		r mg/c, 5.01(5	W. 1.50 Hig/L, 0.55(M. 1.44C3 Mg/C, 1	w. 150 mg/c, 171(1	
	Pleuronecte	platessa (1/1)				M: 4.6 mg/L			
	Poecilia reti	ulata (36/44)		M: 115 mg/L, 115(1	M: 6.25 mg/L	M: 6.6 mg/L, 9 mg/		M: 20.4 mg/L	
	- Pomatoschi	tus microps (1/1)				M: 2.4 mg/L			
	IIIIIIIIIII → Salmo salar	(1/1)							

Apilines (Asute tovisity) (US-EDA New Chemical Categories)

- **1. Click** on the cell with prediction
- 2. Perform Right click and Select Report

2/0/0

1. Summary information for tautomer prediction

