QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.2

How to use the Toolbox AOP workflow for Skin Sensitization

• Background

- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise

Background AOP concept and description

 The OECD has developed the AOP concept as a means of providing transparent mechanistic justification and weight-ofevidence to reduce uncertainty in the predictions for complex toxicological endpoints and it is considered to be the focal point of the future development of the Toolbox*.

*Slide presented on last MG WebEx (April 2013)

Background AOP concept and description *(contd.)*

- A proof-of-concept AOP for skin sensitization is implemented in Toolbox
- The AOP scheme is a directed graph including a sequence of roots
- The AOP workflow uses filtered Toolbox functionalities
- New endpoint-specific AOP databases and profilers are implemented in Toolbox
- The implemented AOP scheme is used *only* to demonstrate two examples using AOP functionalities based on data rich chemicals

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise

Objectives

This presentation demonstrates a number of functionalities of the Toolbox*:

- Simulating skin metabolism for the target chemical
- Identifying analogues of the active metabolite
- Predicting sensitization potential for potentially active metabolites
- Assigning of the prediction for the metabolite to the parent chemical
- Predict skin sensitization potential using implemented AOP

*Demonstrated examples are obtained with Toolbox v3.2

Disclaimer - for the purposes of the tutorial on the use of the workflow and do not represent a guidance on the prediction for the particular chemicals which are rich in data in each node of the workflow

The OECD QSAR Toolbox for Grouping Chemicals into Categories

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise

QSAR TOOLBOX

Overview of implemented AOP scheme

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
 - Details of AOP window
 - AOP workflow for skin sensitization
 - Thresholds of the node of AOP
- The exercise

QSAR TOOLEOX

Overview of the AOP scheme as implemented in Toolbox

Details of AOP window

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
 - Details of AOP window
 - AOP workflow for skin sensitization
 - Thresholds of the node of AOP
- The exercise

Overview of the AOP scheme as implemented in Toolbox

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
 - Details of AOP window
 - AOP workflow for skin sensitization
 - Thresholds of the AOP nodes
- The exercise

Overview of the AOP scheme as implemented in Toolbox

Implemented thresholds for the AOP nodes

- Thresholds are implemented for each AOP node
- Each threshold is indicated within description panel of the AOP node
- Threshold are identified based on assay data related to the corresponding node
- The status of the each node (passed/not passed) depends on the implemented thresholds
- Thresholds of the AOP nodes determined by expert group are provided on the slide 15:

Fhresholds:

 Scale name 'Keratinocytes gene expression EC (ordinal)'
 Scale type 'Ordinal'
 Passed: Very High |High |Moderate |Low
 Not passed: Negative

Overview of the AOP scheme as implemented in Toolbox

Implemented thresholds for the AOP nodes

Node name	Data thresholds	Node status: Pass	Node status: Not pass	
1- Protein binding alerts		presence of alert	absence of alert	
2a and 2b <i>in chemico</i> DPRA Cys and Lys	Peptide depletion, PD (%) > 80 - High 40% \geq PD \leq 80% - Moderate 5% \geq PD \leq 40% - Low 5% $<$ PD - Not reactive	High Moderate Low	Not Reactive	
2c - <i>in chemico</i> Glutathione depletion assay GSH (RC50)	RC50 (mmol/L) ≤ 0.099 – Extremely reactive $0.1 \ge RC50 \le 0.99$ – Highly reactive $1 \ge RC50 \le 15$ – Moderately reactive $16 \ge RC50 \le 70$ – Slightly reactive $70.1 \ge RC50 \le 135$ – Suspect RC50 > 135 – Not reactive	Extremely Reactive Highly Reactive Moderately Reactive Slightly Reactive	Suspect Not Reactive Not reactive at saturation	
2d - <i>in chemico</i> Adduct formation assay LC-MS	Adduct formation (%) \geq 30% - Positive Adduct formation (%) < 30% - Negative	Positive	Negative	
3 - in vitro Keratinocyte ARE (EC1.5, EC2, EC3)	EC3 (%) ≤ 20 - Very High 20 > EC3 ≤ 50 - High 50 > EC3 ≤ 100 - Moderate 100 > EC3 ≤ 2000 - Low EC3 > 2000 - Negative	Very High High Moderate Low	Negative	
4a and 4b <i>in vitro</i> Dendritic cell activity assay h-CLAT and MUSST (expression of CD54 and CD86)	expression of CD54 and CD86 Positive Negative	Positive	Negative	
<i>5 - in vivo</i> Organ response (LLNA)	$0 \ge EC3$ (%) <50 – Positive EC3 > 50 - Negative	Positive	Negative	
6 - <i>in vivo</i> Organism response (GPMT)	Data provided: Strong sensitizer; Moderate sensitizer; Weak sensitizer; Non sensitizer	Strong sensitizer Moderate sensitizer	Weak sensitizer Non sensitizer	

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
 - Input

Chemical Input Input Screen

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX" title.
- Click on "Input" (see next screen shot)

Chemical Input Input target chemical by CAS#

Chemical Input Enter CAS# 107-75-5

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction

📃 Search I	by CAS #						- 0	x
107-	75-5		Tautomeric sets	O Search		ОК	X Cano	cel
Select	All Cle	ar 1	vert Selection	Selected 1 of	2		3	
Selected	CAS	Smiles	Depiction	(Names	CAS/Name	2D/Name	CAS/2D
						2: Moder 1: Ch	2: Moder 1: Ph	1: Higi
						2: De 3: Ke 4: ME	2: SK 3: ME 4: US	•
	107-75-5	CC(CCCC	СНа		1: 3,7-di 2: hydrox 3: 7-hydr	5: Ph 6: Sk 7: Sk	5: Ch 6: De 7: Ke	Ŏ
Yes			~		4: octana 5: 7-hydr	8: US 3: High Ç	8: Sk 3: High Ç	
						1: EC 2: RE 4: High C	1: RE 2: EC 4: High C	
•								÷.

1. Enter the CAS# In the blank field; 2. Click Search button; 3. Press OK

Chemical Input Target chemical identity

- Double click "Substance Identity" displays the chemical identification information.
- The user should note that existing names of the target chemical are presented in different colours. This indicates the reliability of relation CAS-Name for the target chemical(see next screen shots).
- The workflow on the first module is now complete, and the user can proceed to the next module.

Chemical Input Target chemical identity

QSAR Toolbox 3.2.0.74 alpha [Document]			
QSAR TOOLBOX	Input ► Profiling	Endpoint Category Definition) Data Gap Filling > Report
Document	Single Chemical	Chemic	al List
New Open Close Save CAS#	<mark>™ \ } X</mark> <u>N</u> ame <u>S</u> tructure S <u>e</u> lect <u>D</u> elete	Cuery ChemIDs DB Inventor	ny List
Documents	Filter endpoint tree	1 [target]	
•-Document • CAS: 107-75-5	Structure Substance Identity CAS Number Chemical IDs Chemical Name Structural Formula Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards	07-75-5 Einecs Number:20. 3,7-dimethyl-7-hyd hydroxycitronellal octanal, 7-hydroxy 7-hydroxy-3,7-dim CC(CCCC(C)(C)0).	
0=22(0(2)(2)2222)22			
rs fra get fiter type ▼ Create Apply			

Chemical Input Target chemical identity

The colour code indicates the reliability of the chemical identifier:

- **Green**: There is a high consistency between the identifier and the structure. This colour is applied if the identifier is the same in several quality assured databases.
- Yellow: There is only a moderate consistency between the identifier and the structure. The colour is applied if the identifier is the same in several databases for which the quality assurance could not be established.
- **Red**: There is a poor consistency between the identifier and the structure. The colour is applied if the identifier is allocated to different structures in different databases.

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
 - Input
 - Activate AOP and set target

Activate AOP Set target chemical for AOP

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Activate AOP Set target chemical for AOP

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
 - Input
 - Activate AOP and set target
 - Workflow process

• Workflow process start from molecular initiating event to the *in vivo* organism respond

Workflow process Step 1. MIE: protein binding

Example 1

Start with profiling of target chemical

Workflow process Step 1. MIE: protein binding

Example 1

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow process Molecular initiating events

- The node MIE is passed due to the presence of protein binding alert identified for the target chemical by the two protein binding profilers
- The workflow should move further to the *in chemico* assays

<u>Step 2.</u> In chemico Protein binding potency (Cysteine depletion) (node 2a)

Step 2. In chemico Protein binding potency (Cysteine depletion) (node 2a)

- 1. Go to Endpoint and check are there any experimental data for the node 2a
- 2. **Select** highlighted database
- 3. Click Gather
- 4. Data appears on data matrix
- 5. Based on presence of data for the chemical and implemented thresholds (slide # 14-15) node 2a is getting passed
- 6. Node 2b and 2d are automatically changed as passed based the implemented thresholds. Click OK

QSAR TOOLSOX

Workflow process

<u>Step 2.</u> *In chemico* Protein binding potency (Lysine depletion) (node 2b) and *in chemico* Adduct formation LC-MS (node 2d)

Example 1

In this case there is available experimental data for the target chemical related to nodes 2b and 2d. In this respect these two nodes are getting passed. The workflow could proceed with next node

QSAR Toolbox 3.2.0.74 alpha [Document]					
QSAR TOOLEOX	Input Input	Endpoint Category Definition	n > Data Gap Filling > Report		ති 😋 🐼 🔧 About Update
Data Import Ex Import Import Import Import Gather Import Import Import Import	port Delete Delete Delete Delete Delete Delete Delete	Tautomerize			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Apply AOP filtering Databases Select All Unselect All Invert About Physical Chemical Properties Chemical Reactivity COLIPA SH Experimental RCS0 Environmental Fate and Transport Ecotoxicological Information Human Health Hazards	skin Structure Structure Structure Usubstance Identity Human Health Hazards Human Health Hazard		DPRA (Cys) DPRA (Lys) say GSH (RC50) LC-MS , EC3) CLAT (expression MUSST (expressi	20 40 20 20 20 20 20 20 20 20 20 2	Predictions bucket M: 6.55 % M: 6.55 % Unassigned predictions bucket
Inventories Select All Unselect All Invert About Capada DSI		1. Select node 2b 2. Select node 2d			
		The two experimer	ntal data appeared	in the bucket.	I

<u>Step 2.</u> *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

In this case there is no available experimental data for the target chemical related to node 2c, so the next step is to investigate category with similar analogues

Step 2. In chemico Glutathione depletion assay GSH (RC50) (node 2c)

- and structural explanation).
 - 6. Based on the above point it is recommended to define category by Protein binding alerts

<u>Step 2.</u> *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

The OECD QSAR Toolbox for Grouping Chemicals into Categories
<u>Step 2.</u> *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

4. Accept prediction

5. Return to datamatrix

<u>Step 2.</u> *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

Schiff Base Forme.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

L □ Endpoint Specific 4. The assigned prediction appears in the bucket of this node

Workflow process In chemico assays

- The nodes related to the *in chemico* assays are passed due to positive experimental data for the target chemical (node 2a, 2b and 2d) and the positive experimental data found for analogues with an "Aldehyde" group(2c)
- The workflow should move further to the *in vitro* assay (node 3)

Step 3. in vitro Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Step 3. in vitro Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Example 1

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step 3. in vitro Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

- The node 3 related to the *in vitro* assay is passed due to positive experimental data found for the target chemical and implemented thresholds (slide #14 -15)
- The workflow should move further to the other *in vitro* assays (nodes 4a and 4b)

Example 1

Workflow process

<u>Step 4.</u> *in vitro* Dendritic cell activity assay h-CLAT (expression of CD54 and CD86) (node 4a)

Check if there are any data for the target chemical for the in vitro h-CLAT assay (node 4a) 2 QSAR Toolbox 3.2.0.74 alpha [Document] - -Skin Sensitization Full names Predictions bucket $\langle + \rangle$ Ê M: Positive **OSAR TOOLBOX** 1 - Protein binding alerts M: Positive 2a - in chemico Peptide depletion assay DPRA (Cys) ▶ Input ▶ Profiling Category Definition Data Gap Fil Endnoin 2b - in chemico Peptide depletion assay DPRA (Lys) 2c - in chemico Glutathione depletion assay GSH (RC50) Export Delete 2d - in chemico Adduct formation assay LC-MS 1 6 1 * 1 đ 3 - in vitro Keratinocyte ARE (EC1.5, EC2, EC3) Export IUCLID5 Database Inventory Database 4b - in vitro Dendritic cell activity assay MUSST (express 1 [target] Apply AOP filt 5 - in vivo Organ response (LLNA) 6 - in vivo Organism response (GPMT) elect All Unselect All Invert About Target chemical Info panel Unassigned predictions bucket Structure About Physical Chemical Properties Node short name: 4a Chemical Reactivity COLIPA Node full name: in vitro Dendritic cell activity assay h-CLAT (expression of CD54 and CD86 GSH Experimental RC50 Relevant databases: X Information Dendritic cells COLIPA Environmental Fate and T **HSubstance** Identity Associated endpoint tree positions: Ecotoxicological Informat 3 luman Health Hazards#Sensitisation Human Health Hazard Human Health Hazards Assay=Dendritic cell activity (h-CLAT) Type of method=In Vitro Some nodes had their status changed automatically. **V** Irritation / Corrosion Keratinocyte gene expression Giva Skin sensitization OK Skin sensitization ECETOC - Skin - In Chemico -% Depletion of Cystine -% Depletion of Lysine -EIGSH GSH RC50 (1/1) R: 3.49E3(-384;7.36E3) mmol/L -Adduct Formation Eln Vitro 1. Select node 4a - CD54 -CD86 2. Go to Endpoint Lendritic Cell Activity Select All Unselect All Invert About CD86 3. Select database related to node 4a Keratinocyte Gene Ex. **4. Gather** data and click **OK** in the appeared message -EC1.5 -EC2 5. The status of node 4a was changed to passed -EC3

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow process

<u>Step 4.</u> *in vitro* Dendritic cell activity assay MUSST (expression of CD86) (node 4b)

Workflow process

<u>Step 4.</u> *in vitro* Dendritic cell activity assay MUSST (expression of CD86) (node 4b)

Workflow process

<u>Step 4.</u> *in vitro* Dendritic cell activity assay MUSST (expression of CD86) (node 4b)

Example 1

Performed RA prediction is used *only* to exemplify the workflow

Workflow process

<u>Step 4.</u> *in vitro* Dendritic cell activity assay MUSST (expression of CD86) (node 4b)

Step 4. in vitro Dendritic cell activity assay (node 4a and 4b)

Skin Sensitization				
Full names				Predictions bucket
1 - Protein binding alerts		2a		24.10.2013 16:03 [R]: Positive;
2a - in chemico Peptide depletion	on assay DPRA (Cys)			
2b - in chemico Peptide depletion	on assay DPRA (Lys)		>(6)	
2c - in chemico Glutathione dep	pletion assay GSH (RC50)		· · · · · · · · · · · · · · · · · · ·	
2d - in chemico Adduct formation	on assay LC-MS	2c		
3 - In vitro Keratinocyte ARE (E	C1.5, EC2, EC3)	Not checked		
4a - In vitro Dendritic cell activit	ty assay n-CLAT (express	Passed 2d		
5 - in vivo Organ response (LLN	ty assay mussi (express	Not passed		
6 - in vivo Organism response ((GPMT)			
	(aniny			< III. >
Target chemical	Info panel		About	Unassigned predictions bucket
ne y ^{en}	Node short name: 4b Node full name: in vitro De Relevant databases:	ndritic cell activity assay MUSST (expression of CD86)	▲ E	
€ ⁴ , ^{CH}	Dendritic cells COLIPA Associated endpoint tree	e nositions:		
	Human Health Hazards#Sens	itisation		
-	Assay=Dendritic cell activ Type of method=In Vitro	vity (MUSST)	-	
				·

- The node 4a related to the *in vitro* Dendritic cell activity assay (h-CLAT) is passed due to positive experimental data found for the target chemical
- The node 4b related to the *in vitro* Dendritic cell activity assay (h-CLAT) is passed due to the positive experimental data found for analogues present in the category of Schiff base formers.
- The workflow moves further to the *in vivo LLNA* assay (node 5)

Workflow process <u>Step 5. In vivo</u> Organ response (LLNA)(node 5)

Step 5. in vivo Organ and Organism assays (node 5 and 6)

Example 1

Skin Sensitization						
Full names		•••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • • • • •		Predictions bucket
1 - Protein binding alerts		2a				M: 33 %
2a - in chemico Peptide depletio	on assay DPRA (Cys)					
2b - in chemico Peptide depletio	on assay DPRA (Lys)	<mark>1 2b </mark> ≥	3			
2c - in chemico Glutathione dep	letion assay GSH (RC50)					
2d - in chemico Adduct formatic	on assay LC-MS	2 2 2				
3 - In vitro Keratinocyte ARE (EC	CI.5, EC2, EC3)	Not checked				
4a - In vitro Dendritic cell activity assay In-CLAT (express Ab - in vitro Dendritic cell activity assay III-CLAT (express Passed 2d						
5 - in vivo Organ response (LLN		Not passed				
6 - in vivo Organism response (GPMT)						
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Target chemical	Info panel				About	Unassigned predictions bucket
	Node short name: 5				*	
N.C. 575	Node full name: in vivo Org Relevant databases:	jan response (LLNA)			=	
ста Усн	Skin sensitization					
	Skin sensitization ECETOC					
e"	Human Health Hazards#Sens	itisation				
	Endpoint=EC3				-	
(L						·

• Both nodes related to the two in vivo assays (LLNA and GPMT) are passed based on the positive experimental data for the target chemical according to the implemented thresholds

Outlook

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 2: Eugenol (CAS 97-53-0)
 - Input target

Chemical Input Enter CAS# 97-53-0

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction

e) search	by CAS #						~
97-50 Select	3-0 All Cle		Tautomeric sets O Search	2	ОК	X Can	cel
Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D
1. Yes	97-53-0	COc1cc(0	CHs OH CHz	1: eugen 2: eugen 3: 4-allyl- 4: 1-allyl- 5: pheno 6: pheno 7: 2-met 8: 2-met 9: 4-allyl- 10: p-ally	10: E 11: K 12: M 13: M 14: M 15: M 16: P 17: R 18: S 19: S 20: U 3: Low Q 1: Exq 4: Low Q	10: D 11: M 12: U 13: C 14: D 15: K 16: C 17: C 18: M 19: S 20: E 3: Low Q 1: Exp 4: Low Q	•

1. Enter the CAS# In the blank field; 2. Click Search button; 3. Press OK

Chemical Input Target chemical identity

QSAR Toolbox 3.2.0.74 alpha [Document_1]						
QSAR TOOLBOX) Input	F Profiling	Endpoint ► C	ategory Definition	01010 01 1 10100 • Data Gap Filling	► Report
Document		Single Chemical		Chemical	List	
New Open Close Save CAS#	<u>Mame</u> <u>Name</u>	∮ X Select Delete	Query C <u>h</u> emIDs	1 🗐 🧌 DB Inventory	√0 List	
Documents	Filter endpoint tree		1 [target]			
 → Document 	Structure					
	ESubstance Id	entity				
	CAS Numb	er	97-53-0 Einean Number 20	\sim		
C0c1cc(CC=C)ccc10	— Chemical II — Chemical II — Chemical N — Structural F 世Physical Che 世Environmenta ⊞Ecotoxicologi ⊞Human Healtl	lame Formula mical Properties I Fate and Transport cal Information n Hazards	Einecs Number:20 eugenol (4-allyl-2 eugenol 4-allyl-2-methoxy-p 1-allyl-3-methoxy-4. phenol, 2-methoxy-4. phenol, 4-allyl-2-m 2-methoxy-4-(prop 2-methoxy-4-(2pro 4-allyl-2-methoxyp p-allylguaiacol COc1cc(CC=C)cc			
, select filter type ▼ Create Apply						

Outlook

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 2: Eugenol (CAS 97-53-0)
 - Input target
 - Set AOP target

Activate AOP Set target chemical for AOP

Outlook

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 2: Eugenol (CAS 97-53-0)
 - Input
 - Activate AOP and set target
 - Workflow process

• Workflow process start from molecular initiating event to the *in vivo* organism respond

Workflow process Step 1. MIE: protein binding

Workflow process Step 1. MIE: protein binding

Workflow process Step 1. MIE: protein binding

Example 2

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow process Molecular initiating events

- The node MIE is passed due to the presence of positive protein binding alert identified for the Autoxidation products of the target chemical
- The workflow should move further to the *in chemico* assays

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

Example 2

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

- 1. Go to Endpoint
- 2. Select highlighted database
- 3. Click Gather
- 4. There is no data for the target chemical
- 5. There is data for node 2d and node is getting passed.

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

In view of positive protein binding alert identified for (4a the autoxidation products of the target chemical, these products will be further investigated. QSAR Toolbox 3.2.0.74 alpha [Document_1] - 6 5 🖸 🛞 멾 Ê 01010 01 1 10100 $\langle + \rangle$ rth. QSAR TOOLBOX About Update Profiling ▶ Input Endpoint Category Definition Data Gap Filling Report The OECD QSAR Toolbox Single Chemica for Grouping Chemicals -# Т 6 4 4 1 into Categories Close CAS# Name Structure Select Delete Query **ChemIDs** Inventory List Developed by LMC, Bulgar ter endpoint tree. 1 [target] Document Structure Document_1 CAS: 97-53 Carcinogenicity Multiplication Metabolism/Transformations Autoxidation simulator Dissociation simulation Elrritation / Corrosion Hydrolysis simulator (acidic) Neurotoxicity Hydrolysis simulator (basic) Repeated Dose Toxicity Sensitisation Hydrolysis simulator (neutral) L-Skin Microbial metabolism simulator -In Chemico Observed Mammalian metabolism - DPRA Observed Microbial metabolism Observed Rat In vivo metabolism -% Depletion of Lysine Observed Rat Liver S9 metabolism -**EGSH** Rat liver S9 metabolism simulator LITILC-MS (1/1) M: 52 Skin metabolism simulator -⊞In Vitro -⊞In Vivo - Toxicity to Reproduction Toxicokinetics, Metabolism a... ⊟Profile

Example 2

1. Go to Input

2. **Open** nodes of the tree and **Right click** over the node with SMILES and select Multiplication by Autoxidation simulator

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

Perform RA prediction for Autoxidation product of the target chemical

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

Example 2

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)

Step2. In chemico Peptide depletion assay DPRA (Lys) (node 2b)

- 1. Select node 2b related to Lysine peptide depletion assay
- 2. Go to Profiling
- 3. Select relevant profiler and Apply to the parent and AO products
- 4. As seen there is no DPRA alert for the parent. However a positive Lys alert is identified for the metabolite #5
- 5. In this respect RA across was obtained for the AO product based on the fact that no alert was found for the parent chemical

Step2. In chemico Peptide depletion assay DPRA (Lys) (node 2b)

- 1. Focus metabolite #5. It appears in a new datamatrix
- 2. Go to Endpoint and check if there are any data for the metabolite and analogues within category
- 3. Select relevant database and click Gather
- 4. As seen there is Lysine data for the two analogues. The next step is to perform RA analysis
Step2. In chemico Peptide depletion assay DPRA (Lys) (node 2b)

Step2. In chemico Peptide depletion assay DPRA (Lys) (node 2b)

Example 2

Transferring RA prediction of metabolite to the target chemical

Step2. In chemico Peptide depletion assay DPRA (Lys) (node 2b)

Step2. *In chemico* Glutathione depletion assay GSH (RC50)(node 2c)

Example 2

Analyze node 2c related to GSH depletion assay. Profile the set of parent and AO products

Step2. *In chemico* Glutathione depletion assay GSH (RC50)(node 2c)

Step2. *In chemico* Glutathione depletion assay GSH (RC50)(node 2c)

Example 2

- **1. Go** to Category definition
- 2. Right click over the structure and Select Focus
- 3. The focused metabolite appears in a new data matrix
- 4. Select highlighted category and click Define category
- 5. Click OK
- 6. Confirm category of 15 analogues. **Click OK** and read-data for the analogues The next step is to perform RA analysis

Define category name
Category name (15 chemicals) Ed 1vAlken-3-ones (MA) (Protein binding potency)
OK Cancel

⊡Profile

Step2. *In chemico* Glutathione depletion assay GSH (RC50)(node 2c)

Example 2

Perform read-across analysis for the AO product

Step2. *In chemico* Glutathione depletion assay GSH (RC50)(node 2c)

Example 2

Transferring RA prediction of metabolite to the target chemical

1. Transfer RA prediction for RC50 of metabolite to the parent chemical following steps shown on slide # 68 2. The prediction of metabolite is transferred to the parent chemical

Step2. *In chemico* Glutathione depletion assay GSH (RC50)(node 2c)

Example 2

Use read-across prediction of the parent for AOP

Step2. In chemico Adduct formation assay LC-MS (node 2d)

Example 2

Node 2d *In chemico* adduct formation assay is passed based on measured data

QSAR TOOLEOX

Workflow process In chemico assays

- The nodes related to the *in chemico* assays are passed due to positive experimental data for the target chemical (node 2d) and positive RA predictions for the potential metabolite (node 2a,2b).
- The workflow should move further to the *in vitro* assay (node 3)

Step 3. in vitro Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Step 3. in vitro Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Skin Sensitization	2					
Full names	·····	Predictions bucket				
1 - Protein binding alerts	▲ · · · · · · · · · · · · · · · · · · ·	M: >2E3 uM				
2a - in chemico Peptide depleti	on assay	M: >2E3 uM				
2b - in chemico Peptide depleti	on assay $1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $	(5)·····→>(6)··· M: >2E3 uM				
2c - in chemico Glutathione der	pletion as					
2d - in chemico Adduct formati						
3 - in vitro Keratinocyte ARE (E						
4a - in vitro Dendritic cell activi						
4b - in vitro Dendritic cell activity assay I Passed 20						
5 - in vivo Organ response (LLI	VA) 🗸 Not passed					
Target chemical	r Info panel	About Unassigned predictions bucket				
-	Node short name: 3	About				
jens	Node full name: in vitro Keratinocyte ARE (EC1.5, EC2, EC3)					
	Relevant databases:					
	Keratinocyte gene expression Givaudan					
	Human Health Hazards #Sensitisation					
1 <u>2</u>	Assay=Keratinocyte gene expression (ARE)					
- 1	Endpoint=EC1.5	•				

- The node 3 related to the Keratinocyte ARE (EC1.5, EC2, EC3) is Not passed based on the experimental data found for the target chemical (threshold are specified on slide # 15) indicating data below threshold of EC3
- The workflow moves further to the *in vitro* Dendritic cell assay (nodes 4)

QSAR TOOLEOX

Example 2

Workflow process

<u>Step 4.</u> *in vitro* Dendritic cell activity assay h-CLAT (expression of CD54 and CD86) (node 4a)

(4a Check if there are any data for the target chemical for the in vitro h-CLAT assay (node 4a) QSAR Toolbox 3.2.0.74 alpha [Document_1] - F 2 - - X Skin Sensitization $\langle + \rangle$ Ŧ OSAR TOOLBOX Full names Predictions bucket 1 - Protein binding alerts M: Positive ▶ Input Profiling M: Positive 2a - in chemico Peptide depletion assay 2b - in chemico Peptide depletion assay Delete Tautomeriz 2c - in chemico Glutathione depletion as 1 đ 2d - in chemico Adduct formation assay Gathe Import IUCLIDS Export Database Inventor Database 3 - in vitro Keratinocyte ARE (EC1.5, EC2 1 [target] Passed ilter endpoint tree. Apply AOP filtering 4b - in vitro Dendritic cell activity assay 5 - in vivo Organ response (LLNA) Select All Unselect All Invert About Target chemical Info panel Unassigned predictions bucket About Structure Node short name: 4a Physical Chemical Properties Node full name: in vitro Dendritic cell activity assay h-CLAT (expression of CD54 and CD86) Chemical Reactivity COLIPA Relevant databases: GSH Experimental RC50 Dendritic cells COLIPA Enviro mental Fate and Associated endpoint tree positions: Genetic Toxicit Information Human Health Hazards#Sensitisation Ecotoxicological Inform Assay=Dendritic cell activity (h-CLAT) 🖉 Human Health Hazards Immunotoxicity Type of method=In Vitro Some nodes had their status changed automatically. Dendritic cells COLIF Ellritation / Correl Keratinocyte gene exp -Neurotoxicity Skin sensitization OK -Repeated Dose Skin sensitization ECETOC Sensitisation Skin 1. Select node 4a 4 -Eln Chemico 2. Go to Endpoint —% Depletion of Cystine (2/2) CI: 54.9 % 3. Select database related to node 4a (2/2) CI: 6.3 % % Depletion of Lysine 4. Gather data and click OK in the appeared message HEIGSH GSH RC50 (2/2) CI: Moderately Re.. 5. The status of node 4a was changed to passed LEIC-MS Adduct Formation In Vitro 4: Positive Select All Unselect All Invert About **I: Positive** -CD8f M⁻ Positiv Dendritic Cell Activity (MUSST)

Step 4. in vitro Dendritic cell activity assay (node 4a and 4b)

Skin Sensitization			
Full names			Predictions bucket
1 - Protein binding alerts 2a - in chemico Peptide depleti 2b - in chemico Peptide depleti 2c - in chemico Glutathione dep 2d - in chemico Adduct formati 3 - in vitro Keratinocyte ARE (E 4a - in vitro Dendritic cell activi 4b - in vitro Dendritic cell activi 5 - in vivo Organ response (LLM	on assay on assay oletion as on assay C1.5, EC: by assay I by assay I A) the based control of the control of th	>6	M: Positive M: Positive
Target chemical	Info panel	About	Unassigned predictions bucket
or o	Node short name: 4a Node full name: in vitro Dendritic cell activity assay h-CLAT (expression of CD54 and CD86) Relevant databases: Dendritic cells COLIPA Associated endpoint tree positions: Human Health Hazards #Sensitisation Assay =Dendritic cell activity (h-CLAT) Type of method=In Vitro	THE T	

- The node 4a related to the *in vitro* Dendritic cell activity assay (h-CLAT) is passed due to positive experimental data found for the target chemical
- The workflow could further move to the *in vivo LLNA* assay (nodes 5)

Workflow process <u>Step 5. In vivo</u> Organ response (LLNA)(node 5)

Example 2

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step 5. in vivo Organ and Organism assays (node 5 and 6)

Example 1

Skin Sensitization			
- Full names			Predictions bucket
2a - in chemico Peptide deplet 2b - in chemico Peptide deplet 2c - in chemico Glutathione de 2d - in chemico Adduct format 3 - in vitro Keratinocyte ARE (E 4a - in vitro Dendritic cell activ 4b - in vitro Dendritic cell activ 5 - in vivo Organ response (LL 6 - in vivo Organism response	ion assay ion assay pletion as ion assay C1.5, EC ity assay I NA) (GPMT) = Not checked (GPMT) = Not passed		M: Moderate sensitizer
Target chemical	Info panel	About	Unassigned predictions bucket
	Node short name: 6 Node full name: in vivo Organism response (GPMT) Relevant databases: Skin sensitization ECETOC Associated endpoint tree positions: Human Health Hazards #Sensitisation Endpoint=S M W N	* III	

• Both nodes related to the two in vivo assays (LLNA and GPMT) are passed based on the identified positive experimental data for the target chemical

Conclusions

 This tutorial illustrates how implemented proof-of-concept AOP scheme can be used in assessment of skin sensitization of chemicals using different combinations of data and grouping methods related to nodes of the AOP.