QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Example for predicting Repeated dose toxicity of 2,3-dimethylaniline

- Background
- Objectives
- The exercise
- Workflow
- Save prediction

Background

 This is a step-by-step presentation designed to take the user through the workflow for filling data gap for Repeated dose toxicity by read-across based on an analogue approach.

- Background
- Objectives
- The exercise
- Workflow
- Save prediction

Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

- Identify analogues for a target chemical.
- Retrieve experimental results available for those analogues.
- Fill data gaps by read across.

- Background
- Objectives
- The exercise
- Workflow
- Save prediction

The exercise

- In this exercise we will predict the repeated dose toxicity of 2,3-dimethylaniline CAS 87-59-2
- Define initial category of similar analogues based on US-EPA New chemical categories.
- Gather available experimental data for the target chemical and identified analogues
- Apply read across prediction based on analogue approach

- Background
- Objectives
- The exercise
- Workflow
- Save prediction

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report

- Background
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases
- Chemical IDs such as EC number, Einecs number
- Query Tool

B.Group of chemicals

- User List/Inventory
- Specialized Databases

Getting Started

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX".
- Click on "Input" (see next screen shot)

Chemical Input Screen Input target chemical by CAS#

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Chemical Input Screen Enter CAS# 87-59-2

Search by CAS #									
87592 Tautomeric sets Search Concel									
Select All Clear All Selection Selected 1 of									
Selected CAS	Smiles D	epiction	Names	CAS/Name	2D/Name	CAS/2D			
1. Yes 87-59-2	Cc1cccc(CH ₃ CH ₃ NH ₂	1: 2: 3: 4: 5: 6: 7: 8:	1:: High 1:: A 2:: Bi 3:: E(4:: E] 5:: Pł 6:: R 7:: Tc 2:: Low (1:: A 2:: Bi 3:: High 1:: Ba	1:: High 1:: A 2:: T 3:: Pl 4:: El 5:: Bi 6:: EC 7:: R 2:: Low (A 1:: A 2:: Bi 3:: High A 1:: EC	: High			

1. Enter the CAS# In the blank field; 2. Click Search button; 3. Press OK

Chemical Input Target chemical identity

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction.

Search by CAS #									
87592 Tautomeric sets Search							X Cancel		
Select All Clear All Invert Selection Selected 1 of 1									
Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D		
1. Yes	87-59-2	Cc1cccc(CH ₃ CH ₃ NH ₂	1: 2: 3: 4: 5: 6: 7: 8:	1:: High 1:: A 2:: Bi 3:: E 4:: E] 5:: Pf 6:: R 7:: T 2:: Low (1:: A 2:: Bi 3:: High 1:: Ba	1:: High 1:: A 2:: T 3:: Pł 4:: El 5:: Bi 6:: EC 7:: R 2:: Low (A 1:: A 2:: Bi 3:: High A 1:: E	: High A A		
•							Þ		

Chemical Input Target chemical identity

- Double click "Substance Identity" displays the chemical identification information.
- The user should note that existing names of the target chemical are presented in different colours. This indicates the reliability of relation CAS-Name for the target chemical(see next screen shots).
- The workflow on the first module is now complete, and the user can proceed to the next module.

Chemical Input Target chemical identity

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

 For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, Repeated dose toxicity (HESS) and clicking on "View" (see next screen shot).

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Profiling Side-Bar to Profiling results

T		I (100)	5 @ @ X I
	Profiling Endpoint Category	ry Definition → Data Gap Filling → Repo	About Update
Profiling Profiling Schemes			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulga
Drofiling motheda	Filter endpoint tree	1 [target]	
Proming methods		T [targot]	
Select All Unselect All Invert About DNA alerts for CA and MNT by OASIS v.1.1 Eye irritation/corrosion Exclusion rules by BfR Eye irritation/corrosion Inclusion rules by BfR	Structure	C ^M s C ^M s	
in vitro mutagenicity (Ames test) alerts by ISS			
In vivo mutagenicity (Micronucleus) alerts by ISS Keratinocyte gene expression	ESubstance Identity		
Oncologic Primary Classification	EPhysical Chemical Properties		
Protein binding alerts for Chromosomal aberration by OASIS v	1.2		
Protein binding alerts for skin sensitization by OASIS v1.4			
Respiratory sensitisation			
Retinoic Add Receptor Binding	⊞Human Health Hazards		
Skin irritation/corrosion Exclusion rules by BfD	Profile		The tayset has a
Skin irritation/corrosion Inclusion rules by BR	General Mechanistic		I në target nas a
a Empiric		Radical	notontial to internat
Chemical elements		Radical >> Radical	potential to interact
Groups of elements	DNA binding by OASIS v14	Radical >> Radical	with DNA according to
	DIVA binding by OASIS V.1.4	SN1	with DNA according to
🖉 🗹 Organic Functional groups	E	SN1 >> Nucleophil	
🗸 🔽 Organic Functional groups (nested)		SN1 >> Nucleophil	DNA binding profilers
Organic functional groups (US EPA)		SN1	51
Organic functional groups, Norbert Haider (checkmol)	DNA binding by OECD	SN1 >> Nitrenium	
Tautomers unstable	▼	Sivi >> Nitrenium	
<			
Metabolism/Transformations	Ormania Europtional accurate	Alkyl arenes	
Select All Unselect All Invert About	Organic Functional groups	Aniine Aryl	
Documented		Alkyl arenes	
Observed Mammalian metabolism	Organic Functional groups (nester	d) Aniline	The target chemical could cause
Observed Microbial metabolism		Overlapping groups	The target chemical could cause
Observed Rat In vivo metabolism	E Coxicological		RDT toxicity through two different
Simulated	Repeated dose (HESS)	Anilines (Hemolyti	
Autoxidation simulator		Anilines (Hepatoto	effects according to RDT profiler
Autoxidation simulator (alkaline medium)			
Dissociation simulation			
Hydrolysis simulator (acidic)			
Hydrolysis simulator (basic)	T		

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint

Endpoint Overview

• "Endpoint" refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox.

 Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).

Endpoint Case study

- In this example, we limit our data gathering to a single toxicity endpoint: repeated dose toxicity
- In this example, we collect data from the databases containing experimental results for Repeat dose toxicity (Repeated Dose Toxicity (HESS)).
- Click on "Endpoint" in the Toolbox workflow.
- Expand the "Human Health Hazards" section
- Click on the box to select that database.
- Click on "Gather data" (see next screen shot).

Endpoint Gather data

- 2. Select database related to the target endpoint: Repeated dose toxicity HESS
- **Click** Gather 3.

Endpoint Gather data

Q	Repeated values for:	118 data-poir	its, 24 groups, 1	chemicals							- • ×
D	Data points										
		Endpoint	CAS	Structure	Value	Dose	Duration	Effect	Examination items	^	Select one
		NOEL	87-59-2		300 mg/kg/day	12;300 mg/kg/day	28 Days	Basophilic change/Regen	Histopathological findings	ſ	Invert
		NOEL	87-59-2		300 mg/kg/day	12;300 mg/kg/day	28 Days	Basophilic change/Regen	Histopathological findings		
		NOEL	87-59-2	сн ₂ -кн ₂	300 mg/kg/day	12;300 mg/kg/day	28 Days	Basophilic change/Regen	Histopathological findings		
	V	NOEL	87-59-2		300 mg/kg/day	12;300 mg/kg/day	28 Days	Basophilic change/Regen	Histopathological findings		
		NOEL	87-59-2		300 mg/kg/day	12;300 mg/kg/day	28 Days	Basophilic change/Regen	Histopathological findings	, I	1
		NOEL	87-59-2	CH1 CH1	300 mg/kg/day	12;300 mg/kg/day	28 Days	Dilatation	Histopathological findings		У ОК
		NOEL	87-59-2	(O)-***	300 mg/kg/day	12;300 mg/kg/day	28 Days	Dilatation	Histopathological findings		Cancel
	(QSAR Toolbox	3.4.0.17		x			· · · ·		
			862 data poir	nts gathered a	cross 1 chemical	s. 2 Ок					

1. Select OK.

2. The message informs you for number of retrieved data points. **Click** OK

Endpoint Gather data

1 Document_1

Recap

- In the first module, you have entered the target chemical being sure of the correctness of the structure.
- In the second module, you have profiled the target chemical and found that the target could cause RDT toxicity through two different effects
- In the third module, you have found that there is an experimental RDT data for the target structure. We will try to reproduce it using read across analysis
- But before the user can proceed with the "Filling Data Gap" module, he/she should define a category with similar analogues
- Click on "Category Definition" to move to the next module.

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint

Category definition

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.
- Detailed information about grouping chemical (Chapter 4) could be found in document "Manual for Getting started" published on OECD website:

http://www.oecd.org/chemicalsafety/riskassessment/theoecdqsartoolbox.htm

Basic guidance for category formation and assessment

Suitable categorization phases:

- 1. Structure-related profilers
- 2. Endpoint specific profilers (for sub-cat)
- 3. Additional structure-related profilers, if needed to eliminate dissimilar chemicals (to increase the consistency of category) (e.g. chemical elements)

Performing categorization:

- 1. The categorization phases should be applied successively
- 2. The application order of the phases depend on the specificity of the data gap filling
- 3. More categories of same Phase could be used in forming categories
- 4. Some of the phases could be skipped if consistency of category members is reached

Graphical illustration of suitable categorization phases is shown on next slide

Suitable Categorization/Assessment Phases Phase I. Structure based **US EPA Categorization OECD** Categorization Organic functional group Structural similarity ECOSAR **Repeating Phase I due to Multifunctionality of chemicals** Phase II. Mechanism based DNA binding mechanism ٠ Protein binding mechanism Genotoxicity/carcinogenicity Cramer rules Verhaar rule Skin/eye irritation corrosion rules ٠ Repeated dose profiler (NITE) Metabolism accounted for **Phase III. Eliminating dissimilar chemicals Apply Phase I – for structural dissimilarity** Filter by test conditions – for Biological dissimilarity

Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

Subcategorization Endpoint Specific
Category Definition Grouping methods -phase I

Phase I categorization in Toolbox 1 [target] Filter endpoint tree آھي۔ Structure 43 analogues are identified Environmental Fate and Transport 12 analogues are identified ⊞Human Health Hazards **P**Profile - Predefined Not categorized -OECD HPV Chemical Categories Anilines (Acute to US-EPA New Chemical Categories 11 analogues are identified Endpoint Specific Anilines (Hindered) Aquatic toxicity classification by ECOSAR Empiric Alkyl arenes 7 analogues are identified Organic Functional groups Aniline Aryl Alkyl arenes Organic Functional groups (nested) Aniline Overlapping group 15 analogue is identified

Structural similarity, Dice ACF, 50%

Broad grouping Endpoint Non-specific

Category Definition Grouping methods

- Based on these classifications and basic guidance for grouping chemicals explained on the previous slides the US-EPA (as broader group: 43 analogues) is used for defining initial group of analogues (phase I)
- For refinement of category and eliminating dissimilar chemicals a sequence of endpoint specific and structural profilers are applied (phase II):
 - US-EPA New chemical categories
 - Repeated dose (HESS)
 - Chemical elements
 - Structural similarity

Category Definition Defining US-EPA New Chemical categories

Highlight the "US-EPA New Chemical Categories" 2. Click Define
 Click OK to confirm the defined category for the target chemical 4. Click OK

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Category Definition Defining US-EPA New Chemical categories

🥘 Repeated valu	ues for: 3834 data-points, 908	groups, 857 chemicals				
Data points						
	Endpoint	CAS	Structure	Value	Dose 🔺	Select one
	NOEL	95-78-3	ж.	12 mg/kg/day	12;300 mg/kg/day	
	NOEL	95-78-3	¥.,	12 mg/kg/day	12;300 mg/kg/day	Invert
	NOEL	95-51-2		160 mg/kg/day	10;160 mg/kg/day	Check All
	NOEL	95-51-2		160 mg/kg/day	10;160 mg/kg/day	
	NOEL	95-51-2		160 mg/kg/day	10;160 mg/kg/day	Uncheck All
	NOEL	95-51-2		160 mg/kg/day	10;160 mg/kg/day	
	OSAR Toolbox 340.17	121.07.0	لي ال	100 mg/kg/day	10;100 mg/kg/day	ССК
				100 mg/kg/day	10;100 mg/kg/day	
<	25873 data points gathered ac	ross 43 chemicals.	15.0	•	• •	
			ĸ			
		2				

- **1. Click** OK to retrieve all available experimental data
- 2. The message informs you for number of retrieved data points. **Click** OK

Defining US-EPA New Chemical categories

The experimental results for the analogues appeared on datamatrix

QSAR Toolbox 3.4.0.17 [Document_1]			Taxante in the owner.	Comparison Street St.	and the second					×
QSAR TOOLBOX	Input Profiling	È Findpoint → Cat	egory Definition → D	01010 01 1 10100 ata Gap Filling	Report				ලි 🥥 🔇 <u>A</u> bout Update	∢
Categorize	8 ø)	Delete							The OECD QSAR To for Grouping Chemi into Categories	olbox icals
Define Define with metabolism Subcategoriz	ze <u>c</u> ombine cijustering <u>D</u> e	lete D <u>e</u> lete All							Developed by LMC,	Bulgari
Grouping methods	Filter endpoint tree		1 [target]	2	3	4	5	6	7	8
Database Affiliation Inventory Affiliation OCCO HPV Chemical Categories Substance Type US-EPA New Chemical Categories General Hechanistic	Structure			NHs ci	N ^{M2} CI	, A A	CH CH CH	NH2 CH		,
Biodeg BioHC half-life (Biowin) Biodeg primary (Biowin 4) Biodeg probability (Biowin 1) Biodeg probability (Biowin 2) Biodeg probability (Biowin 3) Biodeg probability (Biowin 6) Biodeg probability (Biowin 3) DNA binding by OASIS v. 1.4 DNA binding by OASIS v. 1.4 DNA binding by OASIS v. 1.4 DRA Lysine peptide depletion DPRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 3)(Hydrowin) Hydrolysis half-life (Ka, pH 3)(Hydrowin) Hydrolysis half-life (H 6.5-7.4)	Bubstance Identity Bybstance Identity Bybsical Chemical Properties Benvironmental Fate and Transpr Becotoxicological Information Human Health Hazards Bacute Toxicity Bioaccumulation Carcinogenicity Boyelopmental Toxicity / Tera Benviron / Corrosion Neurotoxicity Biritation / Corrosion Neurotoxicity	nt kogenicity ,						1		
Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 Protein binding by OASIS v1.4 Protein binding by OECD	- Repeated Dose Toxicity - ⊞LOEL - ⊞NOEL - <u>⊞Sensitisation</u>	(39/1172) (43/24701) AGP	M: 12 mg/kg/day, M: 12 mg/kg/day,	M: 160 mg/kg/day, M: 160 mg/kg/day,	M: 100 mg/kg/day,	M: 192 mg/kg/day, M: 192 mg/kg/day,	M: 250 mg/kg/day, M: 125 mg/kg/day,	M: 100 mg/kg/day, M: 100 mg/kg/day,	M: 192 mg/kg/day, M: 92.3 mg/kg/day	M: 18 M: 20
Protein binding potency		nd Distribution								

1. Chemical statistics presenting the number of chemicals and the available experimental data for the two endpoints.

Recap

- In this module, you have defined the category of similar analogues.
- In the next module, you should apply read across in order to fill in data gap
- But before the user can proceed with the "Filling Data Gap" module, he/she should navigate to the target endpoint: In our case we will predict RDT of target for two endpoints: Total NOEL and Total LOEL; Route: Oral (gavage)
- Total NOEL and Total LOEL values coincide with minimal values for all LOELs (NOELs) of the current chemical (more info could be found on next snapshot)
- Click on "Data Gap Filling" to move to the next module.

Total LOEL/NOEL

ilter endpoint tree	1 [target]			
	CAS 108-69-0 NH2			
Structure	\square	-CH3		
	сна сна			1
HELOEL M	in M: 60 mg/kg/day	Minimal value	ue across	
- Rat		all I OFI	values	
└──Oral (Gavage)			values	
-⊞Adrenal (1/	(1)M: 360 mg/kg/day			
-⊞Blood Serum (Sugar) (1/	(1)M: 360 mg/kg/day			
-⊞Urinary Bladder (1/	⁽²⁾ M: 360 mg/kg/day, 360 mg/kg/day			
- Urine (1/1	1) M: 360 mg/kg/day, 360 mg/kg/day, 360	lotal va	lue coincide	e with
니 너무Whole Body		minimal v	alues for al	
Lacrimation (1/	(2) M: 360 mg/kg/day, 360 mg/kg/day			
Ptosis/Palpebral Closure (1/	(2) M: 360 mg/kg/day, 360 mg/kg/day	(10;6	50 mg/kg/d	lay)
-Salivation (1/	2) M. V60 mg/kg/day, 360 mg/kg/day	, , , , , , , , , , , , , , , , , , ,	3, 3,	, ,
	2)Wi. 60 mg/kg/day, 60 mg/kg/day			
	A	Minimal va	lue across	all I
HTTAdrenal (1/3	2) M: 60 mg/kg/day, 360 mg/kg/day, 360 i	NOEL	_ values	
HTTBlood Cell (Coagulation) (1/	(8) M: 360 mg/kg/day, 360 mg/kg/day, 360	mg/kg/dav. 360 mg/kg/da	-	
HEBlood Cell (Erythrocyte) (1/3	0) M: 10 mg/kg/day, 10 mg/kg/day, 10 mg	/kg/day, 10 mg/kg/day, 10		
HTUrinary Bladder (1/1	0) M: 60 mg/kg/day, 60 mg/kg/day, 360 m	g/kg/day, 360 mg/kg/day,		
⊡Uterus (1/	(3) M: 360 mg/kg/day, 360 mg/kg/day, 360	malka/dov		
- Whole Body		Total va	alue coincid	le with
Abnormal Appearance (1/	(2) M: 360 mg/kg/day, 360 mg/kg/day			
— Abnormal Gait (1/	(2)M: 360 mg/kg/day, 360 mg/kg/day	, minimal v	values for a	
—Body Weight↓ (1/	2) M: 60 mg/kg/day, 60 mg/kg/day	(10:	60 ma/ka/a	dav)
-Ptosis/Palpebral Closure (1/	2) M: 60 mg/kg/day, 60 mg/kg/day			
— Total (1/	<mark>/2)</mark> M: 10 mg/kg/day, 10 mg/kg/day			

Now you are ready to continue with next module data gap filling

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Category definition
 - Data gap filling

Data Gap Filling Overview

- "Data Gap Filling" module give access to three different data gap filling tools:
 - Read-across
 - Trend analysis
 - Q)SAR models
- Depending on the situation, the most relevant data gap mechanism should be chosen, taking into account the following considerations:
 - Read-across is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal). Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) in case a low number of analogues with experimental results are identified.
 - Trend analysis is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 - "(Q)SAR models" can be used to fill a data gap if no adequate analogues are found for a target chemical.
- In this example, we use read-across.

Data Gap Filling Interpreting Read-across

- In this example, all the analogues have repeated dose toxicity data (LOEL and NOEL values)
- Predicted values for the target compound is based on initial group of Anilines defined by US-EPA New Chemical categories
- The following subcategorizations are used for filtering the initial group of analogues:
 - US-EPA New chemical categories
 - Repeated dose (HESS)
 - Chemical elements
 - Structural similarity
- Before applying the read across, we should navigate to the target endpoint Total NOEL

See next screen shots

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling

Navigation of endpoint tree: Repeated dose toxicity/**NOEL**/oral gavage/Total

Data Gap Filling Apply read across for Total NOEL

- 1. Click on the cell corresponding to "NOEL" total value for the target chemical.
- 2. Select Read-across
- 3. Click Apply
- 4. **OK**

Data Gap Filling Read-across

- The resulting plot is experimental results of all analogues (Y axis) according to a descriptor (X axis) with the default descriptor of log Kow (see next screen shot).
- The **RED** dot represents predicted results for the target chemical .
- The **BROWN** dots represent the experimental results available for the analogues that are used for the read-across.
- The **BLUE** dot represent the experimental results available for the analogues but not used for read-across.

Data Gap Filling Read-across for NOEL

Data Gap Filling Subcategorization by US-EPA New Chemical Categories

Data Gap Filling Subcategorization by Repeated dose (HESS)

Grouping methods	Adjust options			01010					o o 😣	🔧 🔒
Carcinogenicity (genotox A DART scheme v.1.0	Tarnet	U		10100					<u>A</u> bout <u>U</u> pdat	e
DNA alerts for AMES by O	Anilines (Hemolytic anemia with methemoc	► Endpoint	Category Definition	▶ Data Gap Filling	▶ Report					
DNA alerts for CA and MN	Anilines (Hepatotoxicity) Rank C								The OECD QSAR T	oolbox
Eve irritation/corrosion Ex									into Categories	licals
in vitro mutagenicity (Ame									Developed by LMC	. Bulgaria
in vivo mutagenicity (Micro			1 4 10				1.64		10	
Keratinocyte gene expres	Differ from target by:		1 [target]	2	3	8	11	12	13	14 ^
Protein binding alerts for (All category All category				NH2 CI	10		CH CH	CH.	
Protein binding alerts for s			CH ₃ CH ₃		\square		NH ₂ N=0) L	Ä	
Respiratory sensitisation	Correlation			$\langle \bigcirc \rangle$	Y Y	• X	$\langle O \rangle$	Q	$Q^{-\alpha}$	
Retinoic Acid Receptor Bir	Analogues			2	0 ^{N=0}	${}$		NH ₂	NH ₂	
Skin irritation/corrosion Ex	(16) Anilines (Hemolytic anemia with methe		Zuna Mi 40 mallialdau	Mi <40 mm/lim/days	M. 100 mailer days	Mr. 200 mm/lum/days	Mr 40 mm (km/dmr		M. O as a flux (days of	NA.
Skin irritation/corrosion Inc	(16) Anilines (Hepatotoxicity) Rank C (7) Benzene/ Naphthalene sulfonic acids (1	(2	(/46) [W. 12 mg/kg/day,	IVI. < TO mg/kg/day,.	w. too mg/kg/day	w. 200 mg/kg/day	w. to mg/kg/day	w. To mg/kg/day,	w. z mg/kg/day, ≤	WI. * *
Empiric Chamient alements	(5) Nitrobenzenes (Hemolytic anemia with	-								•
Groups of elements	(5) Nitrobenzenes (Hepatotoxicity) Rank C (2) Not categorized							Accept prediction		
Lipinski Rule Oasis	(1) Pirprofen (Hepatotoxicity) Alert							Return to matrix		
Organic Functional groups		taking the ave	Read a	cross prediction of NOEL,	ues from 5 peighbour s	hemicals			1	
Organic Func		Obser	ved target value: 12.0 mg,	/kg/day, Predicted targe	: value: 7.52 mg/kg/da	y		Select/filter da		_
Organic func								Subcategorize		
Structural sin						•		Mark chemicals by de	scriptor value	
Tautomers u cable								Filter points by test	conditions	
Repeated dose (HESS)						•		Mark focused chemic	al	
 Experimental 						💊 🏓 🗍	•	Mark focused points		_
< Ⅲ ►								Toyort existing marks		_
Metabolism/Transformations								Demove marked the	, nicola (acieta	_
Do not account metabolism 🔺								clean i i i	nicais/points	
Documented								Clear existing marks		=
Observed Mammalian metabol						0		Selection naviga Gan filling converte	tion	
- Observed Rat In vivo metaboli						l T		+ Descriptors/dat	3	
- Observed Rat Liver S9 metab			•			•		+ Model/(Q)SAR		
Simulated				•				Calculation optic	ns	
Autoxidation simulator (alkalin)	3							Data usage		
Dissociation simulation				_						
Hydrolysis simulator (acidic)	Selected 15 (11/26)	. Click S	Subcateo	orize						
Hydrolysis simulator (Dasic) Hydrolysis simulator (neutral)	Select diffe ent	Colort	Deperto			n n n fil a m				
in vivo Rat metabolism simulat 👻		. Select	Repeate	eu dose ((NE22)	promer				H
< <u> </u>	Remove	Click	20move t	o olimin	ato dice	imilar d	homical	c		K
		. CIICK I	Centove (ate uiss		nemical	5.		E.

Data Gap Filling Subcategorization by Chemical elements

Grouping methods Biodegradation fragments Carcinogenicity (genotox : DART scheme v.1.0 DNA alerts for AMES by O DNA alerts for CA and MN Eye irritation/corrosion Ex Eve irritation/corrosion Ind	Group 14 - Carbon C Group 14 - Carbon C Group 15 - Nitrogen N	► Endpoint	Category Definition	01010 10100 • Data Gap Filling	Report				About Update The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by I.M.C. Bulgaria
in vitro mutagenicity (Am in vivo mutagenicity (Micro Keratinocyte gene expres Oncologic Primary Classific Protein binding alerts for (Protein binding alerts for s Respiratory sensitisation Retinoic Acid Receptor Br rtER Expert System ver.1 Skin irritation/corrosion Ex Skin irritation/corrosion In	Differ from target by: O At least one category All categories Correlation Analogues (11) Group 14 - Carbon C (11) Group 15 - Nitrogen N (2) Group 15 - Oxygen O (2) Group 15 - Halpagen CI	(12/	1 [target]	2 NH= CI M: <10 mg/kg/day,	12 C ^{4's} C ^{4's} C ⁴	13 ^{CVS} –CVS –	14 NH: ———————————————————————————————————	15 С ^{ус} ь — миз M: <30 mg/kg/day	18 21 C ^µ ₅ → N ^µ ₅ - J. C ^µ ₅ → N ^µ ₅ M: 10 mg/kg/day, M:
Chemical elements Groups of elements Lipinski Rule Oasis Organic Functional groups Organic functional groups Organic functional groups Structural similarity Tautomers unstable Toxicological Repeated dose (HESS)	(2) Group 17 - Halogens F,CJ,Br,I,At	taking the avera Observe	Read ac ge from the nearest 5 ne d target value: 12.0 mg/	ross prediction of NOEL, ighbours, based on 5 va kg/day, Predicted targe	llues from 5 neighbour ch t value: 7.52 mg/kg/day	hemicals,		Accept prediction Return to matrix Select/filter data Subcategorize Mark chemicals by de Filter points by test of Mark focused chemic Mark focused points Invert existing marks	scriptor value onditions al
Metabolism/Transformations Do not account metabolism Observed Mammalian metabolism Observed Microbial metabolism Observed Rat In vivo metabolism Observed Rat Liver S9 metabolism Simulated Autoxidation simulator Autoxidation simulator Autoxidation simulator Hydrolysis simulator (acidic) Hydrolysis simulator (acidic)	Selected 4 (7/11)		• •		•			Remove marked cher Clear existing marks Selection naviga Gap filling approx Descriptors/dat Model/(Q)SAR Calculation option Data usage Prediction approach	icals/points
Hydrolysis simulator (obsic) Hydrolysis simulator (neutral) in vivo Rat metabolism simulat	Select different Remove	J. Click S 3. Click Re	ubcategor move to	rize. eliminate	2. Selec two dissi	t Chemio imilar che	cal eleme micals.	nts.	

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Subcategorization by Structural similarity

Grouping methods	Adjust cetions		· 01010			o 📀 😒 🔧 🚍
Biodegradation fragments 🔺	Aujust options					About Hodete
Carcinogenicity (genotox :	Target 🥠	Endpoint Catagor	v Definition A Data Can Fillion A Penert			About Opdate
DART scheme v.1.0	Similar 100%	/ Endpoint / Categor	Permition Plata dap Fining Preport			
DNA alerts for AMES by O						The OECD QSAR Toolbox
DNA alerts for CA and MN						for Grouping Chemicals
Eye initiation/corrosion Ex		Similarity options				Developed by 140-0 developed
in vitro mutagenicity (Ame		Measure	Molecular features	Calculation		Developed by LMC, Bulgaria
in vivo mutagenicity (Micro	Differ from target by:	 Tanimoto (Jaccard) 	Atom pairs	 Fingerprint 	15	18 21 🔺
Keratinocyte gene expres	• At least one category	Dice	Topologic torsions	Hologram		
- Oncologic Primary Classifica	All categories	Kulczymski-2	Path		NHz	CH. CH. NY
Protein binding alerts for (Cydes	Average by features		Se Ser I
Protein binding alerts for s	Correlation	Ochiai (Cosine)		Combine all features	(O)-a	
- Respiratory sensitisation	Analogues	🔘 Yule		Combine all reactires	<u> </u>	
Retinoic Acid Receptor Bir	(1) Similar [30%-40%)	Formula	Ontions	Atom characteristics		
rtER Expert System ver.1	(2) Similar [40%-50%)		Options	✓ Atom type ✓ Count H attached	10 mg/kg/day, M: <30	mg/kg/day M: 10 mg/kg/day, M: 1 🖕
Skin irritation/corrosion Ex	(3) Similar [50%-60%)		Description	Count heavy atoms attache		•
A Empiric	(2) Similar [60%-70%)		Atom type(AI)- encode the species of atom, the	e Hybridization		
Chemical elements	(2) Similar [70%-80%] (1) Similar [80%-90%]	c / 0.5[(a+c)+(b+c)]	number of non-nydrogen atoms attached to it, and	a the Incident pi-bonds	Acce	ept prediction
Groups of elements			Atom pair - Atom pairs are defined as substructu	ures of Charge	Retu	urn to matrix
Lipinski Rule Oasis			the form ATi –ATi-(distance), where (distance) is	the Cyclic		1
Organic Functional groups =			distance in bonds along the shortest path between	n an	- Se	elect/filter dat
Organic Functional groups		Description	atom of type ATi and an atom of type ATj.		Sub-	
Organic functional groups						categonze
Organic functional groups,		(А (с) В)			Mar	rk chemicals by descriptor value
Structural similarity	2				Filte	er points by test conditions
Taucomers unstable	2	Evample			Mar	rk focused chemical
		A	B C OOT			
				V OK Cancel	Mar	rk focused points
		Similari	ty = 69.697% Details	C Default	Inv	ert existing marks
Metabolism/Transformations		0-1 0	<->		Rer	nove marked chemicals/points
Documented					Clea	ar existing marks
– Observed Mammalian metabol			• • • • • • • • • • • • • • • • • • •	•		election navigation
Observed Microbial metabolism					•••••• •••	ap filling approach
Observed Rat In vivo metabol					± D	escriptors/data
Observed Rat Liver S9 metab					+ M	odel/(Q)SAR
Autoxidation simulator					🖃 C a	alculation options
Autoxidation simulator (alkaline					Dat	ta usage
Dissociation simulation			.		Pre	diction approach options

Structural similarity is applied in order to refine the category to the most similar analogues

- 1. Click Subcategorize.
- 2. Select Structural similarity and modify default options (3) to the following: Dice, Atom pairs, Atom type; Count H attached.

Data Gap Filling Subcategorization by Structural similarity

1. Hold Control button and select first two bins in order to eliminate them.

2. Click Remove to eliminate chemicals with similarity less than 60%

Data Gap Filling Read across result for Total NOEL

1. **Click** Accept prediction

2. Click Return to matrix

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Result of read-across prediction

QSAR TOOLBOX	(+) • Input	FIT FIT	€ Endpoint	Category Definition	01010 01 1 1 10100 > Data Gap Filling	► P Report				ூ @ @ <u>A</u> bout Upda	ate
Filing ¢ Apply										The OECD QSAR for Grouping Che into Categories Developed by LM	Toolbox micals C, Bulgaria
Data Gap Filling Method	total			1 [target]	2	3	4	5	6	7	8
O Read-across Trend analysis (Q)SAR models	Structure			CH3 CH3	NH: CI	N ^M s CI	j.	CH CH CH	NH2 CH		+o-{
Target Endpoint Human Health Hazards Repeated Dose Toxicity NOEL Rat Oral (Gavage) Whole Body Total	⊞Substance Id ⊞Environmenta ⊟Human Healt □Reneated I	entity <u>al Fate and Transport</u> <u>h Hazards</u> Dose Toxicity	t								
	- <u>Rat</u> -⊞Oral	(Feed)	(39/6	 (6) M: 12 mg/kg/day, 	M: 10 mg/kg/day,		M: 192 mg/kg/day, M: <192 mg/kg/da	. M: 250 mg/kg/day,	M: 100 mg/kg/day,	M: 192 mg/kg/day, M: 92.3 mg/kg/day	. M: 1E3
	-⊕Oral	(Gavage) /hole Body Total (water Containing)	(39/7	M: 12 mg/kg/day, R: 9.6(2.73;33.8) (2)	M: <10 mg/kg/day,	M: 100 mg/kg/day		M: 125 mg/kg/day,	M: 100 mg/kg/day,		M: 200
	⊞Profile										
1. Read across	predic	tion 9.	6 mg/l	<q day<="" th=""><th>coincide</th><th>with ex</th><th>perimer</th><th>ntal data</th><th>a (12 m</th><th>g/kg/da</th><th>y)</th></q>	coincide	with ex	perimer	ntal data	a (12 m	g/kg/da	y)

Data Gap Filling Apply read-across for Total LOEL

QSF 3 DLEOX	Input Profiling	Endpoint	Category Definition	01010 01 1 10100 ▶ Data Gap Filling	▶ Report	🌀 🕲 🛠 🔧 📻 About Update
Filing ¢ Apply						The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Data to Filing Method	total		1 [target]	2	3 4 5	6 7 8
Read-across Trend anà:sis (0)SAR mo 2 nt Human Health Haz. Rat Oral (Gavage) Whole Body Total	Structure BSubstance Identity Environmental Fate and Tra Human Health Hazards	nsport		NH: CI	Possible data inconsistency Duration Strain Gr; CD (SD) (2 points) Gr344 (14 points) SD (44 points) Test guideline Gr4 (4 points) Gr34 (4 points) Gr	
	GRepeated Dose Toxicity GLOEL	(3/6 (35/60 ning) (1/2	M: 12 mg/kg/day	mediction by gap fi	Image: Status and Status an	M: 192 mg/kg/day, M: 100 mg/kg/day, M: 100 mg/kg/day, M: 92 3 mg/kg/day M: 200
		(43/79	R: 9.6(2.73;33.8)		Selected [58/60] points	m. co ng ng ag , m. oz.o ng ng ag , m. 200

- 1. **Click** on the cell corresponding to "LOEL" total value for the target chemical.
- 2. Select Read-across
- 3. Click Apply
- 4. **OK**

Data Gap Filling Read-across for LOEL

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling

Subcategorization by US-EPA New Chemical Categories

1. Click Subcategorize

3. Click Remove to eliminate dissimilar chemicals.

2. Select US-EPA New Chemical Categories

Data Gap Filling Subcategorization by Repeated dose (HESS)

1. Click Subcategorize.

2. Select Repeated dose (HESS)

3. Click Remove to eliminate dissimilar chemicals.

Data Gap Filling Subcategorization by Chemical elements

Click Subcategorize Select Chemical elements

3. Click Remove to eliminate dissimilar chemicals.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling

Subcategorization by Structural similarity

Structural similarity is applied in order to refine the category to the most similar analogues

- 1. Click Subcategorize.
- 2. Select Structural similarity and apply the similarity options as with Total NOEL: Dice, Atom pairs, Atom type; Count H attached
- 3. Select first two categories (hold Ctrl button)
- 4. Click Remove to eliminate chemicals with similarity less than 60%

Data Gap Filling Read across result for Total LOEL

1. Click Accept prediction

2. Click Return to matrix

Data Gap Filling Result of read-across prediction

QSAR TOOLBOX	Input ► Profiling	Endpoint → C	Category Definition	01010 01 1 10100 Data Gap Filling	▶ Report				ର୍ତ୍ତ 🥝 🧟 <u>A</u> bout Upd) 🔧 📳 ate
Filing 4 Apply									The OECD QSAR for Grouping Che into Categories Developed by LM	Toolbox micals IC, Bulgari
Data Gap Filling Method	total		1 [target]	2	3	4	5	6	7	8
 ○ Read-across ● Trend analysis ● (Q)SAR models 	Structure		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		NH ² CI	, Š	SH2 CH C=N0 CH	N ^M s CH		PD.
Target Endpoint Human Health Hazards Repeated Dose Toxicity LOEL Rat Oral (Gavage) Whole Body Total										
		(3/6)		1		M: 192 mg/kg/day,			M: 192 mg/kg/day,	
		(35/6)	M: 12 mg/kg/day, R: 17.5(3.35;91.1) .	1: 10 mg/kg/day,			M: 250 mg/kg/day,	M: 100 mg/kg/day,		M: 1E3
		(43/79)	M: 12 mg/kg/day, R: 9.6(2.73;33.8)	. M: <10 mg/kg/day,	M: 100 mg/kg/day	M: <192 mg/kg/da	M: 125 mg/kg/day,	M: 100 mg/kg/day,	M: 92.3 mg/kg/day	. M: 200
	t⊞Pronie									4

1. Read across prediction for LOEL: 17.5 mg/kg/day coincide with experimental LOEL: 12 mg/kg/day

Read across predictions for 2,3 dimethylaniline (CAS 87-59-2) Result

Ultimate prediction:

Total NOEL – 9.6 mg/kg/day Total LOEL – 17.5 mg/kg/day

Based on obtained results (for total LOEL and total NOEL) the target chemical is classified as *Category* 2 regarding GHS classification ¹

Route of exposure	Units	Guidance value range (dose/concentration)
Oral (rat)	mg/kg bw/d	10 - 100
Dermal (rat or rabbit)	mg/kg bw/d	20 - 200
Inhalation (rat) gas	ppm/6h/d	50 - 250
Inhalation (rat) vapour	mg/litre/6h/d	0.2 - 1.0
Inhalation (rat) dust/mist/fume	mg/litre/6h/d	0.02 - 0.2

Table 3.9.2: Guidance values to assist in Category 2 classification

¹ Globally Harmonized System of Classification and Labeling of Chemicals (GHS): <u>http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf</u>

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Category definition
 - Data gap filling
 - Report

- Remember the report module allows you to generate a report on the predictions performed with the Toolbox. This module contains predefined report templates as well as a template editor with which users can define their own user defined templates. The report can then be printed or saved in different formats.
- Generating the report is shown on next screenshots

- 1. Select prediction
- 2. Right Click and Select Report
- 3. Select the prediction for which you want to generate the report

1. Report for LOEL

1. Predicted value

2. Applicability domain

1. Additional information for category members
Outlook

- Background
- Objectives
- The exercise
- Workflow
- Save prediction

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc, on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

1. Click on Save button; 2. Define name of the file; 3. Click Save button

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Open saved file

Once the file has been saved **1. Go** to Input; **2. Click** Open; **3. Find** and **select file**; **4. Click** Open