OECD QSAR Toolbox v.3.4

How to use the Toolbox AOP workflow for Skin Sensitization
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
• The exercise
Background
AOP concept and description

• The OECD has developed the AOP concept as a means of providing transparent mechanistic justification and weight-of-evidence to reduce uncertainty in the predictions for complex toxicological endpoints and it is considered to be the focal point of the future development of the Toolbox*.

*Slide presented on last MG WebEx (April 2013)
A proof-of-concept AOP for skin sensitization is implemented in Toolbox

The AOP scheme is a directed graph including a sequence of roots

The AOP workflow uses filtered Toolbox functionalities

New endpoint-specific AOP databases and profilers are implemented in Toolbox

The implemented AOP scheme is used only to demonstrate two examples using AOP functionalities based on data rich chemicals
Outlook

- Background
- **Objectives**
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
Objectives

This presentation demonstrates a number of functionalities of the Toolbox*:

• Simulating skin metabolism for the target chemical
• Identifying analogues of the active metabolite
• Predicting sensitization potential for potentially active metabolites
• Assigning of the prediction for the metabolite to the parent chemical
• Predict skin sensitization potential using implemented AOP

*Demonstrated examples are obtained with Toolbox v3.4

Disclaimer - for the purposes of the tutorial on the use of the workflow and do not represent a guidance on the prediction for the particular chemicals which are rich in data in each node of the workflow
Outlook

• Background
• Objectives
• **Overview of AOP scheme as implemented in the Toolbox**
• The exercise
Overview of implemented AOP scheme

Key node
1. Protein binding alerts
   2a. \textit{in chemico} Peptide depletion assay DPRA (Cys)
   2b. \textit{in chemico} Peptide depletion assay DPRA (Lys)
   2c. \textit{in chemico} Glutathione depletion assay GSH (RC50)
   2d. \textit{in chemico} Adduct formation assay LC-MS
   3. \textit{in vitro} Keratinocyte ARE (EC1.5, EC2, EC3)
   4a. \textit{in vitro} Dendritic cell activity assay h-CLAT (expression of CD54 and CD86)
   4b. \textit{in vitro} Dendritic cell activity assay MUSST (expression of CD86)
   5. \textit{in vivo} Organ response (LLNA)
   6. \textit{in vivo} Organism response (GPMT)

Key event
Protein binding – in silico/theoretical
Protein binding potency in chemico
Cellular response
Organ response
Organism response
Outlook

• Background
• Objectives
• **Overview of AOP scheme as implemented in the Toolbox**
  • **Details of AOP window**
  • AOP workflow for skin sensitization
  • Thresholds of the node of AOP
• The exercise
Overview of the AOP scheme as implemented in Toolbox

Details of AOP window

- Panel with full names of nodes
- AOP tree scheme
- Indication for assigned prediction
- Panel with predictions/measured data assigned to the selected node
- Panel with unassigned predictions
- Color legend
- Panel with information for selected node
- Target chemical
- Short description
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
  • Details of AOP window
  • AOP workflow for skin sensitization
    • Thresholds of the node of AOP
• The exercise
Overview of the AOP scheme as implemented in Toolbox

AOP workflow for skin sensitization

AOP: skin sensitisation

MIE: protein binding

*In chemico*: protein binding potency
- Peptide depletion assay DPRA (Cys)
- Peptide depletion assay DPRA (Lys)
- Glutathione depletion assay GSH (RC50)
- Adduct formation assay LC-MS

*In vitro*: gene expression in keratinocytes

*In vitro*: cytokine profiles in dendritic cells
- Dendritic cell activity assay h-CLAT (expression of CD54 and CD86)
- Dendritic cell activity assay MUSST (expression of CD86)

*In vivo*: Organ response (LLNA)

*In vivo*: Organism response (GPMT)
Outlook

• Background
• Objectives

• **Overview of AOP scheme as implemented in the Toolbox**
  • Details of AOP window
  • AOP workflow for skin sensitization
  • **Thresholds of the AOP nodes**

• The exercise
Overview of the AOP scheme as implemented in Toolbox

Implemented thresholds for the AOP nodes

- Thresholds are implemented for each AOP node
- Each threshold is indicated within description panel of the AOP node
- Threshold are identified based on assay data related to the corresponding node
- The status of the each node (passed/not passed) depends on the implemented thresholds
- Thresholds of the AOP nodes determined by expert group are provided on the slide 15:

<table>
<thead>
<tr>
<th>Thresholds:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Scale name 'Keratinocytes gene expression EC (ordinal)'</td>
</tr>
<tr>
<td>Scale type 'Ordinal'</td>
</tr>
<tr>
<td>Passed: Very High</td>
</tr>
<tr>
<td>Not passed: Negative</td>
</tr>
</tbody>
</table>

The OECD QSAR Toolbox for Grouping Chemicals into Categories
## Overview of the AOP scheme as implemented in Toolbox

### Implemented thresholds for the AOP nodes

<table>
<thead>
<tr>
<th>Node name</th>
<th>Data thresholds</th>
<th>Node status: Pass</th>
<th>Node status: Not pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Protein binding alerts</td>
<td>presence of alert</td>
<td>absence of alert</td>
<td></td>
</tr>
<tr>
<td>2a and 2b in chemico DPRA Cys and Lys</td>
<td>Peptide depletion, PD (%) &gt; 80 - High, 40% ≥ PD ≤80% - Moderate, 5% ≥ PD ≤40% - Low, 5% &lt; PD - Not reactive</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>2c - in chemico Glutathione depletion assay GSH (RC50)</td>
<td>RC50 (mmol/L) ≤ 0.099 - Extremely reactive, 0.1 ≥ RC50 ≤ 0.99 - Highly reactive, 1 ≥ RC50 ≤ 15 - Moderately reactive, 16 ≥ RC50 ≤ 70 - Slightly reactive, 70.1 ≥ RC50 ≤ 135 - Suspect, RC50 &gt; 135 - Not reactive</td>
<td>Extremely Reactive</td>
<td>Highly Reactive</td>
</tr>
<tr>
<td>2d - in chemico Adduct formation assay LC-MS</td>
<td>Adduct formation (%) ≥ 30% - Positive, Adduct formation (%) &lt; 30% - Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>3 - in vitro Keratinocyte (EC1.5, EC2, EC3)</td>
<td>EC3 (%) ≤ 20 - Very High, 20 &gt; EC3 ≤ 50 - High, 50 &gt; EC3 ≤ 100 - Moderate, 100 &gt; EC3 ≤ 2000 - Low, EC3 &gt; 2000 - Negative</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td>4a and 4b in vitro Dendritic cell activity assay h-CLAT and MUSST (expression of CD54 and CD86)</td>
<td>expression of CD54 and CD86</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>5 - in vivo Organ response (LLNA)</td>
<td>0 ≥ EC3 (%) &lt;50 - Positive, EC3 ≥ 50 - Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>6 - in vivo Organism response (GPMT)</td>
<td>Data provided: Strong sensitizer; Moderate sensitizer; Weak sensitizer; Non sensitizer</td>
<td>Strong sensitizer</td>
<td>Moderate sensitizer</td>
</tr>
</tbody>
</table>
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
• The exercise
  • Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
    • Input
• Open the Toolbox.
• The six modules in the workflow are seen listed next to “QSAR TOOLBOX” title.
• Click on “Input” (see next screen shot)
Chemical Input
Input target chemical by CAS#
Chemical Input
Enter CAS# 107-75-5

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-dimensional depiction.

1. **Enter** the CAS# In the blank field; 2. **Select** Clear All; 3. **Click** over the first column with label No, then the column become marked with Yes 4. **Click** OK;
Chemical Input
Target chemical identity

• Double click “Substance Identity” displays the chemical identification information.
• The user should note that existing names of the target chemical are presented in different colours. This indicates the reliability of relation CAS-Name for the target chemical (see next screen shots).
• The workflow on the first module is now complete, and the user can proceed to the next module.
Chemical Input
Target chemical identity
Chemical Input
Target chemical identity

The colour code indicates the reliability of the chemical identifier:

- **Green**: There is a high consistency between the identifier and the structure. This colour is applied if the identifier is the same in several quality assured databases.

- **Yellow**: There is only a moderate consistency between the identifier and the structure. The colour is applied if the identifier is the same in several databases for which the quality assurance could not be established.

- **Red**: There is a poor consistency between the identifier and the structure. The colour is applied if the identifier is allocated to different structures in different databases.
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
• The exercise
  • Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
    • Input
    • **Activate AOP and set target**
Activate AOP
Set target chemical for AOP

1. Filter endpoint tree – write skin in the green filed
2. Expand the tree – open the tree to the Sensitization node
3. Right click near the AOP label
4. Select activate AOP
5. AOP window appears

Continued on the next slide
Activate AOP
Set target chemical for AOP

1. Right click over the structure and select “Set AOP target”
2. The target chemical appears in the AOP window
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
• The exercise
  • Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
    • Input
    • Activate AOP and set target
  • Workflow process
Workflow process

- Workflow process start from molecular initiating event to the *in vivo* organism respond

- **MIE:** protein binding
- **In chemico:** protein binding potency assays
- **In vitro:** gene expression assay
- **In vitro:** cytokine profiles in dendritic cells
- **In vivo:** Organ response (LLNA)
- **In vivo:** Organism response (GPMT)
Workflow process
Step 1. MIE: protein binding

Example 1

1. Open Profiling
2. Select node #1 related to MIE.
3. Relevant profilers are highlighted, select highlighted profilers
4. Apply selected profilers

Start with profiling of target chemical
Workflow process
Step 1. MIE: protein binding

Example 1

1. The target chemical has protein binding alert according to both protein binding profilers.
2. The node is automatically changed to passed based on both profiling outcome results and implemented thresholds (see slide #14-15). Click OK.
3. Prediction assigned to the selected node appears in the panel “prediction bucket”.
Example 1

- The node MIE is passed due to the presence of protein binding alert identified for the target chemical by the two protein binding profilers.
- The workflow should move further to the *in chemico* assays.
Workflow process

Step 2. *In chemico* Protein binding potency (Cysteine depletion) (node 2a)

Example 1

1. Select node 2a related to Cys depletion assay.
2. The row related to the selected node is getting highlighted.
3. The profilers related to node 2a are highlighted.
4. Click Apply.
5. The target chemical has “long chain aliphatic aldehyde” – low reactive alert.
6. Perform right click and select “Use for AOP”.
7. The profiling result appears in the bucket of the node. This last action is not related with change of node status. The node status depends on implemented data thresholds (see slide 14-15).
Workflow process
Step 2. *In chemico* Protein binding potency (Cysteine depletion) (node 2a)

Example 1

1. Go to Endpoint and check are there any experimental data for the node 2a
2. Select highlighted database
3. Click Gather
4. Data appears on data matrix
5. Based on presence of data for the chemical and implemented thresholds (slide # 14-15) node 2a is getting passed
6. Node 2b and 2d are automatically changed as passed based the implemented thresholds. Click OK
Workflow process

Step 2. *In chemico* Protein binding potency (Lysine depletion) (node 2b) and *in chemico* Adduct formation LC-MS (node 2d)

Example 1

In this case there is available experimental data for the target chemical related to nodes 2b and 2d. In this respect these two nodes are getting passed. The workflow could proceed with next node.

1. Select node 2b
2. Select node 2d

The two experimental data appeared in the bucket.
Workflow process

Step 2. *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

In this case there is no available experimental data for the target chemical related to node 2c, so the next step is to investigate category with similar analogues.

1. Select node 2c related to *in chemico* glutathione depletion assay
2. The row related to the selected node is highlighted
3. Select highlighted database
4. Click Gather
5. No data has been found for the target chemical, **click** OK
Example 1

The category of similar analogue should be investigated.

1. Select node 2c related to *in chemico* glutathione depletion assay
2. The row related to the selected node is highlighted
3. Select highlighted category
4. Click Define
5. There are no structural alerts identified for the target chemical according to this profiler (no mechanistic and structural explanation).
6. Based on the above point it is recommended to define category by Protein binding alerts
Workflow process

Step 2. *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

In this case we should investigate the category by Protein binding alerts. The reason for this is that GHS RC 50 depends on mechanism of protein binding interaction.

1. Select Protein binding alerts for SS by OASIS v1.4
2. Click Define
3. The system will search for analogues with "Aldehyde" group
4. Click OK
5. The system identify 63 analogues. Click OK
6. Gather data for the analogues
Workflow process

Step 2. In chemico Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

Performed read-across in node 2c is used *only* to exemplify the workflow.

Data thresholds

- **RC50 (mmol/L)**
  - ≤ 0.099 – Extremely reactive
  - 0.1 ≥ RC50 ≤ 0.99 – Highly reactive
  - 1 ≥ RC50 ≤ 15 – Moderately reactive
  - 16 ≥ RC50 ≤ 70 – Slightly reactive
  - 70.1 ≥ RC50 ≤ 135 – Suspect
  - RC50 > 135 – Not reactive

1. Change units on the title to mmol/l in order read-across to be consistent with data on datamatrix
2. The average (default option) values are used in the prediction
3. The logKow descriptor as the most suitable for predicting skin sensitization effect is used in RA prediction
4. Accept prediction
5. Return to datamatrix
Workflow process

Step 2. *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

Example 1

The next step is to use read-across prediction for AOP

1. Right click over the cell with prediction
2. Select Use for AOP
3. Click OK
4. The assigned prediction appears in the bucket of this node
Example 1

• The nodes related to the in chemico assays are passed due to positive experimental data for the target chemical (node 2a, 2b and 2d) and the positive experimental data found for analogues with an "Aldehyde" group(2c).

• The workflow should move further to the in vitro assay (node 3)
Workflow process

Step 3. *in vitro* Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Example 1

1. Go back to Category definition
2. Click on Documents in order to return to datamatrix of the target
3. Select node 3 related to the *in vitro* assay
4. The rows related to *in vitro* assay are getting highlighted
Workflow process

Step 3. *in vitro* Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Example 1

Check are there are data for the target chemical for the *in vitro* assay

1. Go to Endpoint
2. Select highlighted database
3. Click Gather
4. The experimental data appears on datamatrix
5. Click OK on the information window
6. Node 3 has been changed to passed based on implemented thresholds (slide 14 - 15)
Example 1

• The node 3 related to the *in vitro* assay is passed due to positive experimental data found for the target chemical and implemented thresholds (slide #14-15)

• The workflow should move further to the other *in vitro* assays (nodes 4a and 4b)

Workflow process

**Step 3. in vitro Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)**
Workflow process

Step 4. *in vitro* Dendritic cell activity assay h-CLAT (expression of CD54 and CD86) (node 4a)

Example 1

Check if there are any data for the target chemical for the *in vitro* h-CLAT assay (node 4a)

1. Select node 4a
2. Go to Endpoint
3. Select database related to node 4a
4. Gather data and click OK in the appeared message
5. The status of node 4a and 4b was changed to passed
Workflow process

Step 4. *in vitro* Dendritic cell activity assay MUSST (expression of CD86) (node 4b)

Example 1

Check if there are any data for the target chemical for the *in vitro* MUSST assay (node 4b)

1. Select node 4b
The experimental data appeared in the bucket
Workflow process

Step 4. *in vitro* Dendritic cell activity assay (node 4a and 4b)

Example 1

- The nodes 4a and 4b related to the *in vitro* Dendritic cell activity assay (h-CLAT) is passed due to positive experimental data found for the target chemical.
- The workflow moves further to the *in vivo* LLNA assay (node 5).
Workflow process
Step 5. *In vivo* Organ response (LLNA)(node 5)

**Example 1**

1. Select node 5
2. Go to Endpoint
3. Select database related to the node 5
4. Click Gather
5. Click OK
6. The data appears in the bucket of the node
7. The node 5 and 6 are automatically changed to passed, based on experimental data for the target chemical and the implemented thresholds (see slide #14-15)

Check are there any data for the target chemical for the *in vivo* Organ response (LLNA)(node 5)
Both nodes related to the two in vivo assays (LLNA and GPMT) are passed based on the positive experimental data for the target chemical according to the implemented thresholds.
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
• The exercise
  • Example 2: Eugenol (CAS 97-53-0)
    • Input target
Chemical Input
Enter CAS# 97-53-0

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-dimensional depiction.

1. Enter the CAS# in the blank field; 2. Click Search button; 3. Press OK
Chemical Input
Target chemical identity

The OECD QSAR Toolbox for Grouping Chemicals into Categories
Outlook

• Background

• Objectives

• Overview of AOP scheme as implemented in the Toolbox

• The exercise
  • Example 2: Eugenol (CAS 97-53-0)
    • Input target
    • Set AOP target
Activate AOP
Set target chemical for AOP

1. Filter endpoint tree – write skin in the green filed
2. Expand the tree – open the tree to the Sensitization node
3. Right click near the AOP label
4. Select activate AOP
5. AOP window appears
6. Set target for AOP (see slide 25)
Outlook

• Background
• Objectives
• Overview of AOP scheme as implemented in the Toolbox
• The exercise
  • Example 2: Eugenol (CAS 97-53-0)
    • Input
    • Activate AOP and set target
  • **Workflow process**
Workflow process

• Workflow process start from molecular initiating event to the *in vivo* organism respond.
Workflow process
Step 1. MIE: protein binding

Start with profiling of target chemical

1. Open Profiling
2. Select node #1 related to MIE.
3. Relevant profilers are highlighted, select highlighted profilers
4. Apply selected profilers to the target chemical
Workflow process
Step 1. MIE: protein binding

Example 2

1. The target chemical has no protein binding alert
2. The node is automatically changed to not passed based on absence of alert. **Click OK**
3. The next step is to investigate whether the substance has skin sensitization potential via autoxidation

Start with profiling of target chemical
Workflow process
Step 1. MIE: protein binding

Simulate Autoxidation products of the target chemical

1. Select Autoxidation simulator
2. Select highlighted profilers relevant to the MIE
3. Click Apply
4. The profiling results appeared on data matrix
5. Right click over the node 1 and perform “Not checked”
6. Right click over the cell with profiling results and select “Use for the AOP”
7. Status of node 1 is changed to “Passed” based on the implemented thresholds (slide #14-15)
Example 2

Molecular initiating events

- The node MIE is passed due to the presence of positive protein binding alert identified for the Autoxidation products of the target chemical
- The workflow should move further to the in chemico assays
Example 2

**Workflow process**

**Step 2. In chemico Peptide depletion assay DPRA (Cys) (node 2a)**

1. **Select** node 2a
2. **Select** highlighted profilers relevant to node 2a
3. **Click** Apply
4. The profiling results appeared on data matrix
5. There is no alert found for the target
Workflow process
Step 2. *In chemico* Peptide depletion assay DPRA (Cys) (node 2a)

Example 2

1. Go to Endpoint
2. Select highlighted database
3. Click Gather
5. There are data for node 2a, 2b and 2d and nodes are getting passed.
Example 2

Workflow process

Step 2. *In chemico* Glutathione depletion assay GSH (RC50) (node 2c)

1. Go to endpoint
2. Select highlighted database
3. Click Gather
4. Node 2c is getting passed
Example 2

- The nodes related to the *in chemico* assays are passed due to positive experimental data for the target chemical (node 2a, 2b, 2c and 2d). The workflow should move further to the *in vitro* assay (node 3).
Workflow process

Step 3. *in vitro* Keratinocyte ARE (EC1.5, EC2, EC3) (node 3)

Example 2

1. Select node 3
2. Go back to Endpoint
3. Select highlighted database
4. Click Gather
5. There is experimental data for the parent chemical, which appears on data matrix
6. Node 3 is getting “Passed” based on the experimental data and implemented threshold (slide #14-15)

Check are there experimental data for the parent chemical for node 3
Example 2

The node 3 related to the Keratinocyte ARE (EC1.5, EC2, EC3) is passed based on the experimental data found for the target chemical (threshold are specified on slide # 15).

The workflow moves further to the *in vitro* Dendritic cell assay (nodes 4).
Workflow process

**Step 4. in vitro Dendritic cell activity assay h-CLAT**
(expression of CD54 and CD86) (node 4a)

**Example 2**

Check if there are any data for the target chemical for the in vitro h-CLAT assay (node 4a)

1. **Select** node 4a
2. **Go** to Endpoint
3. **Select** database related to node 4a
4. **Gather** data and click **OK** in the appeared message
5. The status of node 4a and 4b were changed to passed
Workflow process

Step 4. *in vitro* Dendritic cell activity assay (node 4a and 4b)

Example 2

- The node 4a and 4b related to the *in vitro* Dendritic cell activity assay (h-CLAT) is passed due to positive experimental data found for the target chemical.
- The workflow could further move to the *in vivo* LLNA assay (nodes 5).
Workflow process
Step 5. *In vivo* Organ response (LLNA)(node 5)

Check are there any data for the target chemical for the *in vivo* Organ response (LLNA)(node 5)

1. **Select** node 5
2. **Go** to Endpoint
3. **Select** database related to the node 5
4. **Click** Gather
5. **Click** OK
6. The data appears in the bucket of the node
7. Nodes 5 and 6 are getting passed based on experimental data extracted for the target chemical
Workflow process

**Step 5. in vivo Organ and Organism assays (node 5 and 6)**

*Example 1*

- Both nodes related to the two in vivo assays (LLNA and GPMT) are passed based on the identified positive experimental data for the target chemical.
Conclusions

• This tutorial illustrates how implemented proof-of-concept AOP scheme can be used in assessment of skin sensitization of chemicals using different combinations of data and grouping methods related to nodes of the AOP.