QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Predicting the carcinogenicity potential of

1-(2-hydroxyethyl)-1-nitrosourea (CAS 13743-07-2)

by filtering with Ames experimental data

QSAR TOOLEOX

Outlook

• Background

- Objectives
- The exercise
- Workflow

Background

 This is a step-by-step presentation designed to take the user through the workflow for filling data gap for carcinogenicity effects by read-across based on an analogue approach. The aim of this data gap filling is to illustrate how the initial set of identified analogues could be filtered based on measured AMES data.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow

Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

- Identify analogues of the target chemical.
- Retrieve experimental results available for those analogues.
- Fill data gaps for carcinogenicity by read across.
- Filtering analogues by measured AMES data.
- Save the prediction.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow

The exercise

- The aim of exercise is to predict the carcinogenicity potential of 1-(2-hydroxyethyl)-1nitrosourea (CAS 13743-07-2), taken as a "target" chemical, by filtering with Ames mutagenicity data.
- The prediction will be accomplished by collecting set analogues considered to be in the same category as the target molecule.
- The category will be defined based on structural similarity of all the chemicals in the category with respect to the Organic functional group profiler.
- The experimental data for the target chemical and identified analogues will be collected from databases including carcinogenicity data.
- Read across will be applied based on analogue approach.
- Analogues will be filtered based on two approaches:
 - Data filter filtering by AMES experimental data
 - Mechanism based DNA and Protein binding profilers
- Finally the obtained prediction result will be saved.

Cancerogenicity Background

- Cancers are a large family of diseases that involve abnormal cell growth with the potential to invade or spread to other parts of the body [1,2].
- Classically, cancer has been viewed as a set of diseases that are driven by progressive genetic abnormalities that include mutations in tumor-suppressor genes and oncogenes, and chromosomal abnormalities. However, it has become apparent that cancer is also driven by epigenetic alterations [3].
- Epigenetic alterations refer to functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence. Examples of such modifications are changes in DNA methylation (hypermethylation and hypomethylation) and histone modification [4] and changes in chromosomal architecture (caused by inappropriate expression of proteins such as HMGA2 or HMGA1).
- Carcinogenicity is a complex, multistep process, conditioned by DNA and Protein alterations[5].
- Basically chemical carcinogens are classified as: into two types carcinogens:
 - Genotoxic, and
 - Nongenotoxic carcinogens
- The analysis continues with assessment of the carcinogenicity of the target chemical taking into • account DNA and protein interactions.

^{1.} Cancer Fact sheet N° 297". World Health Organization. February 2014. Retrieved 10 June 2014.

^{2.} Cancer - Signs and symptoms". NHS Choices. Retrieved 10 June 2014.

^{3.} Baylin SB, Ohm JE (February 2006). "Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction?". Nature Reviews Cancer 6 (2): 107– 16. doi:10.1038/nrc1799. PMID 16491070

^{4.} Kanwal, R; Gupta, S (2012). "Epigenetic modifications in cancer". *Clinical Genetics* **81** (4): 303–11. doi:10.1111/j.1399-0004.2011.01809.x. PMC 3590802.

^{5.} Baker, S.G., Cappuccio, A., Potter, J.D. Research on early-stage carcinogenesis: Are we approaching paradigm instability. Journal of Clinical Oncology. Volume 28, Issue 20, 10 July 2010, Pages 3215-3218

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases
- Chemical IDs such as EC number, EINECS number
- Query Tool

B.Group of chemicals

- User List/Inventory
- Specialized Databases

Getting Started

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX".
- Click on "Input" (see next screen shot).

Chemical Input Screen Input target chemical by CAS#

Chemical Input Screen Enter CAS# 13743-07-2

Search by CAS #		- 🗆	×
13743-07-2 Tautomeric sets Search 1 1 Select All Clear All Select All Clear All Invert Selection Selected 0 of 0	 ОК 2 	X Ca	ncel
Selected CAS Smiles Depiction	Names CAS/N	ame 2D/Name	CAS/2D
<			>

1. Enter the CAS# in the blank field; 2. Click "Search" button; 3. Press "OK"

Chemical Input Target chemical identity

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction.

Search by CAS =	ŧ			_		\times		
13743-07-2	X Cano	el						
Select All C	lear All I	nvert Selection Selected 1 of	1					
Selected CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D		
1. Yes	07 NC(=0)N	O≈N N	1:	1:: High 1:: Ci 2:: Ci 3:: D:	1:: High 1:: Ci 2:: Ci 3:: D:	: High		
< > >								

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Chemical Input Target chemical identity

- Double click "Substance Identity" displays the chemical identification information.
- The user should note that existing names of the target chemical are presented in different colours. This indicates the reliability of relation CAS-Name-SMILES for the target chemical (see next screen shots).
- The workflow on the first module is now complete, and the user can proceed to the next module.

Chemical Input Target chemical identity

*More details about color legend are provided on next slide

Chemical Input Chemical identity

- The colour code indicates the reliability of the chemical identifier:
- **Green**: There is a high reliability between the identifier and the structure. This colour is applied if the identifier is the same in several quality assured databases.
- Yellow: There is only a moderate reliability between the identifier and the structure. The colour is applied if the identifier is the same in several databases for which the quality assurance could not be established.
- **Red**: There is a poor reliability between the identifier and the structure. The colour is applied if the identifier is allocated to different structures in different databases.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Side-Bar to Profiling

 For most of the profilers, background information can be retrieved by highlighting one of the profilers and clicking on "View"

Profiling Side-Bar to Profiling

1. Highlight the profiler 2. Click View

3.Click on category "Quinone methides". The textual description is displayed on the right

The OECD QSAR Toolbox for Grouping Chemicals into Categories

- The outcome of the profiling determines the most appropriate way to search for analogues (detailed information in Manual for getting started (Chapter 4). <u>http://www.oecd.org/dataoecd/58/56/46210452.pdf</u>
- Table 4 1 in chapter 4 (Manual for getting started) lists a selection of profilers and their relevance for different endpoints of regulatory relevance.
- In our case study the following endpoint specific and general mechanistic profiling schemes are relevant to Carcinogenicity endpoint:
 - DNA alerts for AMES by OASIS v.1.4
 - DNA alerts for CA and MNT by OASIS v.1.1
 - DNA binding by OECD
 - Protein binding alerts for Chromosomal aberration by OASIS v1.2
 - Carcinogenicity (genotox and nongenotox) alerts by ISS
 - Oncologic Primary Classification
 - Organic functional groups all four types
- More details about identified analogues is provided on slide 41

- Click in the box next to the name of the profiling methods related to the target endpoint.
- This selects (a green check mark appears) or deselects (green check mark disappears) profilers.
- For this example, **check** all the profilers mentioned above and **click** on apply (see next screen shot).

- 2. **Select** the endpoint specific profilers associated with target endpoint and mentioned on slide 25
- 3. Click "Apply"

- The profiling will take up to several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target chemical (see next screen shot).
- Please pay attention on the outcome of endpoint-specific profilers – Protein and DNA binding by OASIS (see sidebar on carcinogenicity above) and general (endpoint – non specific, OFG) profilers.
- This result will be used to search for suitable analogues in the next steps of the exercise.

QSAR TOOLBOX Imput Profiling Profiling Schemes Apply Imput	Profiling + Endpoint + Category Definition	01010 Data Gap Filling → Report	There is an indication for Protein and DNA binding interaction of target chemical based on SN1, Ac-SN2 and
Profiling methods Select All Unselect All Invert About US-EPA New Chemical Categories	Filter endpoint tree	[1 [target]	"Carcinogenicity alerts by ISS"
General Mechanistic Endpoint Specific Acute aquatic toxicity classification by Verhaar (Modifieo)	Structure	CH CH C	genotoxic alert "Aryl and aryl
Acute aquatic toxiatry MOA by OASIS Aquatic toxicity dassification by ECOSAR Bioaccumulation - metabolism aler ts Bioaccumulation - metabolism half-lives		Hydrazines and Related Compounds	within molecule. Oncologic
Biodegradation fragments (BioWIN MITT)	–⊞General Mechanistic		primary classification confirms
Carcinogenicity (genotox and nongenotox) alerts by ISS	-Endpoint Specific		the positive DNA and Protain
DART scheme v. 1.0 DNA alerts for AMES by OASIS v. 1.4 DNA alerts for CA and MMT by OASIS v. 1.1	Carcinogenicity (genotox and nongenotox)	Alkyl and aryl N-nitroso groups (Genotox) Structural alert for genotoxic carcinogenicity	alerts, which may cause the
E yie initation (corrosion Exclusion rules by BfR Eye initation/corrosion Indusion rules by BfR Eye initation/corrosion Indusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Microudeus) alerts by ISS	-DNA alerts for AMES by OASIS v.1.4	SN1 >> Nucleophilic attack after carbenium ion formation SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds SN1 >> Nucleophilic attack after nitrosonium cation formation SN1 >> Nucleophilic attack after nitrosonium cation formation >> N-Nitroso Compour	carcinogenic effect of the molecule
Keratinocyte gene expression ✓ Oncologic Primary Classification ✓ Protein binding alerts for Chromosomal aberration by OASIS v.1.2 Protein binding alerts for skin sensitization by OASIS v1.4 Protein binding alerts for skin sensitization by OASIS v1.4	-DNA alerts for CA and MNT by OASIS v.1.1	SN1 SN1 >> Nucleophilic attack after carbenium ion formation SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds SN1 >> Nucleophilic attack after nitrosonium cation formation	
Retinoic Acid Receptor Binding rtER Expert System ver, 1 - USEPA		SNT >> NUCLEOPHIC attack after httpssnium cation formation >> N-Nitroso Compound Nitrosamile Type Compounds Nitrosamine Type Compounds	S
Skin irritation (concision indusion rules by BiR Finpiric Chemical elements Groups of elements Upinski Rule Oasis Organic Functional groups Organic Functional groups (US EPA) Organic functional groups (US EPA)	Protein binding alerts for Chromosomal ab	SN1 SN1 >> DNA and protein alkylation via the formation of alkyldiazonium ion SN1 >> DNA and protein alkylation via the formation of alkyldiazonium ion >> Alkylater SN1 >> DNA and protein alkylation via the formation of alkyldiazonium ion >> Alkylater SN2 >> DNA and protein alkylation via the formation of alkyldiazonium ion SN2 >> DNA and protein alkylation via the formation of alkyldiazonium ion >> Alkylater SN2 >> DNA and protein alkylation via the formation of alkyldiazonium ion >> Alkylater SN2 >> DNA and protein alkylation via the formation of alkyldiazonium ion >> Alkylater SN2 >> Drotein alkylation via the formation of alkyldiazonium ion >> N-Nitros SN2 >> Protein alkylation via direct attack at the N-alkyl group	H ni pa H ni pa
Tautomers unstable	V Contraction	Sive >> Protein aikylation via direct attack at the in-aikyl group >> Alkylated hitrosoure	as
Metabolism/Transformations Select All Unselect All Invert About	Organic Functional groups	Alcohol N-Nitroso Semicarbazide	~
1 Document			1/0/0

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint

Endpoint Overview

• "Endpoint" refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox.

 Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).

Endpoint Case study

- In this example, we limit our data gathering to the two endpoints: "carcinogenicity" and "Ames mutagenicity". The latter will be used for filtering by Ames data in the subcategorization process. Selection of databases including "Ames mutagenicity" data is needed prior to entering data gap filling and assessing carcinogenicity effect.
- The following "carcinogenicty" and "Ames mutagenicity" databases have been selected and used in this analysis:
 - Bacterial ISSTY
 - Carcinogenicity potency database (CPDB)
 - Carcinogenicity&mutagenicity ISSCAN
 - Genotoxicity OASIS
 - Toxicity Japan MHLW
- Follow the steps:
 - Click on "Endpoint" in the Toolbox workflow.
 - Expand the "Human Health Hazards" section
 - Click on the box to select databases mentioned above
 - Click on "Gather data" (see next screen shot).

Endpoint Gather data

- 1. Go to "Endpoint"
- 2. Expand the "Human Health Hazards" section

3. **Select** databases related to the target endpoint: Carcinogenicity and Ames mutagenicity. This is needed for forthcoming filtering by Ames measured data in the stage of "Data gap filling"

4. Click "Gather"

Endpoint Gather data

Read data?					x)	QSAR To	oolbox 3.4.0.17		×
All endpoints	Choose	✓ from Tautomers	🗸 ок	Car	cel	11 data	a points gathered acros	ss 1 chemicals.	
				1					ОК
Repeated values for	r: 6 data-points, 3 groups,	1 chemicals				-	2		4
Data points	Endpoint	CAS	Structure	Value	Au	uthor	Select one		
	Summary carcinogenicity	13743-07-2	510 50	Positive	Romualdo E	Benigni			
	Summary carcinogenicity	13743-07-2	<u></u>	Positive	Romualdo E	Benigni	Invert		
	Summary carcinogenicity	13743-07-2	519 pr.	Positive	Romualdo E	Benigni	Check All		
	Summary carcinogenicity	13743-07-2	ي ^{ني} .	Positive	Romualdo E	Benigni			
	Summary carcinogenicity	13743-07-2	Dra jake	Positive	Romualdo E	Benigni	Uncheck All		
	Summary carcinogenicity	13743-07-2	°-, "	Positive	Romualdo E	Benigni			
							• ок		
<						>	X Cancel		

- 1. Click "OK" to extract data from database
- 2. Click on "Select one" button
- 3. Click "OK"
- 4. The message informing for number of gathered data for the target chemical appears. Click "OK"

QSAR Toolbox 3.4.0.17 [Document]

Endpoint Gather data

QSAR	TOOLBOX) Input	FIT Profiling	Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report	
Data	Import	Export	*	Delete Tau	utomerize			
<u>G</u> ather	Import IUCLID5	Export IUCLID5	<u>D</u> atabase	Inventory Data	abase			
Select All Ur	Databases nselect All Invert Abo health Hazards te Oral Toxicity database (Chen herial mutagenicity ISSSTY	ut IDPlus)	Filter er ^ S	ndpoint tree		1 [target]]	Measured data for the target chemical appears on data matrix. There is more than one positive experimental data
✓ Caro ✓ Caro ⊂ Cell Den	cinogenic Potency Database (CF cinogenicity&mutagenicity ISSC/ Transformation Assay ISSCTA dritic cells COLIPA elopmental & Reproductive Tox	DB) NN icity (DART)		Acute Toxicity Bioaccumulation				associated with both endpoints: carcinogenicity and Ames mutagenicity. We will try to reproduce positive
ECH ECC Estr Estr Eve	elopmental toxicity ILSI IA CHEM VTOX ogen Receptor Binding Affinity I Irritation ECETOC otoxicity CASIS	DASIS		- Mouse - Carcinogenicity - Summary Carcinog - TD50	enicity (1/2) (1/2)	M: Positive, Positive M: 0.818 mg/kg/da	ĺ	carcinogenicity data
Hum Kera Micro Micro	an Half-Life atinocyte gene expression Giva atinocyte gene expression LuSe onudeus ISSMIC onudeus OASIS	udan ns			enicity (1/3) (1/2)	M: Positive, Positiv M: 0.244 mg/kg/da		
MUN Rep Rep Rep Skin	IRO non-cancer EFSA Dose Tox Fraunhofer ITEM eated Dose Toxicity HESS ent Inhalation Toxicity Databas Iirritation	e		Developmental Toxicity / Genetic Toxicity - In Vitro - Bacterial Reverse N	/ Teratogenicity			
Skin Skin Toxi	sensitization sensitization ECETOC CastDB icity Japan MHLW			Gene Mutation	himurium (1/1)	M: Positive		
Yeas	st estrogen assay database		↓ -	With S9				
Select All Ur	Inventories	out		— TA 1535	(1/1)	M: Positive		
Canada DSL COSING DSSTOX ECHA PR EINECS HPVC OECD			^ ~	Undefined Undefined M -⊞DNA Damage and F -⊞DNA React. (Ashby -⊞In Vitro Mammalian	Strain etabolic Activation Repair Assay, Unsc r Fragments) Chromosome Aberr			

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Recap

- In the first module, you have entered the target chemical being sure of the correctness of the structure.
- In the second module, you have profiled the target chemical and found that the target chemical may interact with DNA and proteins based on 3 different mechanisms. This could be an indication for positive carcinogenicity effect of the target.
- In the third module, you have found that there are more than one positive carcinogenicity data found for the target structure associated with rat and mouse species. Also positive experimental data was found for Ames mutagenicity. Positive experimental data supports positive DNA and Protein binding alerts found for the target chemical. We will try to reproduce the positive carcinogenicity data by using read-across analysis.
Next actions

- Read-across analysis will be performed for "Summary carcinogenicity" endpoint associated with rat species
- Before proceeding with "Data Gap Filling" module, the user should define a category of similar analogues. The "Organic functional groups" as broad endpoint-non specific grouper will be used for defining similar analogues (see next slides).
- Click on "Category Definition" to move to the next module.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition.

Category Definition Grouping methods

- The forthcoming 4 slides provide basic information about definition and procedure of "Category definition".
- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.
- Detailed information about grouping chemical (Chapter 4) could be found in document "Manual for Getting started" published on OECD website:

http://www.oecd.org/chemicalsafety/riskassessment/theoecdqsartoolbox.htm

Basic guidance for category formation and assessment

Usually, a three stages procedure is recommended for building categories for read-across, in Toolbox. The categorization phases could be organized as follows:

- Stage I: Broad and endpoint non-specific primary categorization of chemicals based on their belonging to common chemical classes, predefined categories or being structurally similar
- Stage II: Subcategorization based on mechanisms conditioning the target endpoint thus coming to endpoint specific subset of chemicals reacting by same interaction mechanisms.
- Stage III: Further narrowing down the category based on elimination of chemicals most dissimilar to target one by using additional structure-related profilers

This sequence of stages is not mandatory and depends on the specificity and number of the chemical analogues and target endpoint. Moreover, some of the stages could be skipped if consistency of category members is reached earlier. It is also recommended only primary categorization to be applied in the Category Definition phase of the Toolbox workflow whereas the subcategorization to be applied at Data gap filling phase; thus, one could follow up the effect of subcategorization on the read-across results (having visualization of the endpoint vs. parameter relationship).

The structural similarity is not recommended to be applied as primary categorization. However, often it is needed to be used in the last stage of the subcategorization – for eliminating most dissimilar chemicals. This holds for read-across implementation for any endpoint.

Graphical illustration of suitable categorization phases is shown on next slide

The OECD QSAR Toolbox for Grouping Chemicals into Categories

23.02.2015

Suitable Categorization/Assessment Phases Phase I. Structure based **US EPA Categorization OECD** Categorization Organic functional group Structural similarity ECOSAR **Repeating Phase I due to Multifunctionality of chemicals** Phase II. Mechanism based DNA binding mechanism ٠ Protein binding mechanism Genotoxicity/carcinogenicity DART v1.0 Cramer rules Verhaar rule ٠ Skin/eye irritation corrosion rules ٠ Repeated dose profiler (NITE) Metabolism accounted for **Phase III. Eliminating dissimilar chemicals**

Apply Phase I – for structural dissimilarity

Apply Phase I – for structural dissimilarity Filter by test conditions – for Biological dissimilarity Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

Category Definition Grouping methods – phase I

Category Definition Phase I grouping methods – definitions

Category used for grouping (phase I)	Structural feature met in the chemical structure - highlighted in red	Boundary(ies) coding the rule	Comment
US-EPA (New Chemical categories)	O=N NH ₂ N O OH	N#CY}(V3) AND N#CY}(V3) MW= 133 Da	The chemical meet the structural and parametric criteria of the category
ECOSAR	O=N NH2 OH	C−NH₂ C C C C C C C C C C C C C C C C C C C	The chemical meets the structural criteria of the category
Organic functional groups (OFG)	Alcohol	H C C (SP3)	The chemical meet the
	N-nitroso	N ^(V3) -N ^(V3)	structural criteria of each of these four OFG categories: Alcohol, N- nitroso, Urea and Semicarbazide
	Urea derivatives	Hyb ₃ N ^{V23} Hyb ₃ N ^{V23} C	
	Semicarbazide		44

Category Definition Grouping methods - recap

- Based on above recommendations and basic guidance for grouping chemicals explained on the previous slides, phase I grouping methods are compared each other and illustrated on slide 43
- Definition of structural fragments met in the target chemical regarding different categorization groups are provided on slide 44
- Analysis of structural fragments shows that the most appropriate group for identifying analogues is OFG, when two out of 4 structural fragments are combined: "N-Nitroso" and "Urea derivatives".

The two alerting categories mentioned above are used for categorization, because:

- They cover basic functionalities, which may explain the positive DNA and protein interaction. Alcohol group is an inert group and usually does not lead to positive genotoxic effect. Hence, no carcinogenic effect will be expected from this group and is omitted from the selection. "Semicarbazide" group is an alternative group, which could be used in the group selection instead of "Urea derivatives".
- US-EPA and ECOSAR grouping methods are not used for categorization, because they are broad and do not cover the two basic functionalities, which could explain the positive carcinogenicity effect.

Category Definition Defining category by OFG

1. **Go** to "Category definition"

2. **Highlight** the "Organic functional group"

3. **Click** "Define" 4. **Click** over the category "Alcohol" and "Semicarbazide" and **remove** it from the selection by clicking on button 5. **Click** "OK" 6. **Click** "Yes" on the appeared warning message. 53 analogues were identified.

7.Click "OK"

Category Definition Read data for Analogues

Redundancy table appears informing for repeating data values for same chemical presented in different databases.

🦲 Repeate	ed values for:	74 data-points, 37 group	ps, 36 chemicals				_		×
Data points									
		Endpoint	CAS	Structure	Value	Autho	<u>}</u> ≤s	elect one	
5	ন	Summary carcinogenicity	13743-07-2	G. 10	Positive	Romualdo Benig			
C		Summary carcinogenicity	13743-07-2	^{در ب} ه	Positive	Romualdo Benigni		Invert	
5	<u> </u>	Summary carcinogenicity	13743-07-2	0.0 Jac.	Positive	Romualdo Benigni	(Check All	
C	3	Summary carcinogenicity	13743-07-2	<u>د م</u>	Positive	Romualdo Benigni		الم راد ما	
5	2	Summary carcinogenicity	10589-74-9		Positive	Romualdo Benigni	U	ncheck All	
C		Summary carcinogenicity	10589-74-9)- (Positive	Romualdo Benigni			
5	<u> </u>	Summary carcinogenicity	869-01-2	~~.	Positive	Romualdo Benigni		🗸 ОК	
C		Summary carcinogenicity	869-01-2	<u>, , , , , , , , , , , , , , , , , , , </u>	Positive	Romualdo Beni		V Connel	
<	_			u :					
QSAR Toolb	ox 3.4.0.17		×						
294 data po	oints gather	ed across 53 chemicals.							
οκ – 3									
In our case we use single data value: 1. Click "Select one" button, then 2. Clic "OK": 3. 276 data points are gathered for the identified 53 analogues. Click "OK"									

Category Definition Defining category by OFG

- The data is automatically collected.
- Based on the defined category ("N-Nitroso" and "Urea derivatives") 53 analogues have been identified
- The name of the category appears in the "Defined Categories" window, indicating the number of substances belonging to the category.

• In other words, these 53 compounds along with the target chemical form a category, which will be used for data gap filling (see next slide).

Category Definition Defining category by OFG

The experimental carcinogenicity (1) and genotoxicity (2) data for the analogues appears on datamatrix

QSAR TOOLBOX	Figure 1 Figure 2 Profiling Endpoint Category Definition	01010 01 1 10100 ▶ Data Gap Filling	▶ Report				⑤ @ @ <u>A</u> bout Upd) 🔧 🔚 ate
Document	Single Chemical	Chemical List					The OECD QSAR for Grouping Che into Categories Developed by LM	Toolbox micals IC, Bulgai
Documents	Filter endpoint tree	1 [target]	2	3	4	5	6	7 /
- Document	Structure	CH CH	NH2 NN-N CH2)) Nis		SH N SH	
	──Bioaccumulation ─□Carcinogenicity ─⊡Cynomolgus	(1/2)	M: Positive, 4.52			1		
	-⊞Hamster (5	/10) M. D	M. D					
	H⊞Rouse (5	(15) M: Positive, 0.818	M: Positive, 1.23	M: Depitive 0.241	M: Depitive 0.555	M: Depitive 0.517	M: Desitive 4.21	M: Dr
	HERAT (30/	(1/2) WI. POSILIVE, 0.244	M: Positive, 0.092 M: Positive 7 18	Wi. Fositive, 0.541	Wi. Positive, 0.555	WI. FOSILIVE, 0.517	WI. FOSILIVE, 4.51	IVI. FC
	H#Developmental Toxicity / Teratogenicity	(112)						
	-Genetic Toxicity	1						
						2		
	Bacterial Reverse Mutation Assay (e.g. Ames Te	est)						
	Gene Mutation							
	Salmonella typhimurium	Mi Desitive	M. Desitive			M. Desitive	M: Negative	M. D.
	H⊞INO S9 Into (26	(26) IVI. POSILIVE	M: Positive Positiv			M: Positive	IVI. IVegative	W. PC
NC(=O)N(CCO)N=O	HTWithout S9 (29	(67) M: Positive	M: Positive, Positiv.			M: Positive, Positiv		
	Undefined Metabolic Activation	,						
071	- DNA Damage and Repair Assay, Unscheduled E)						
	-⊞DNA React. (Ashby Fragments)							
~~~ ``	-⊞In Vitro Mammalian Cell Micronucleus Test	(2/2)	M: Positive					
	+⊞In Vitro Mammalian Chromosome Aberrati (11	/18)	M: Positive, Positive		M: Positive, Positive	M: Positive, Positive	M: Positive, Positive	
	H⊞Mammalian Cell Gene Mutation Assay (	(2/2)	IVI: Positive					
select filter type V Create Apply	H⊞Sister Chromatid Exchange Assay	(/12)	M: Negative Positive	3				
		/12]	w. wegative, i Ositive					
Ac montion on th	provious slidos wo will	try to ron	raducad	the need	tivo corc	inogoni	aity data	

#### QSAR TOOLEOX

## **Outlook**

- Background
- Objectives
- The exercise
- Workflow
  - Input
  - Profiling
  - Endpoint
  - Category definition
  - Data gap filling
    - Navigation to target endpoint

#### **Data gap filling** Navigation through the endpoint tree

- Before proceeding with the "Data Gap Filling" module, the user should navigate through the endpoint tree and find the specific gap that will be filled in.
- The user can navigate through the data tree by closing or opening the nodes of the endpoint tree.
- Double-click on the node next to Human Health Hazards then Carcinogenicity, followed by Rat, Summary carcinogenicity.
- In this example, all data associated with different route of administration is used in read-across analysis. In this respect the user should enter gap filling on the level of "Summary carcinogenicity" (see next screen shot).

### **Data gap filling** Navigation through the endpoint tree



1. **Point** the mouse cursor on the cell of "Summary carcinogenicity" endpoint in order to combine data with different routes. This is the target endpoint. Carcinogenicity experimental data distributed by different "Route of administration" is displayed beneath.

#### QSAR TOOLEOX

## **Outlook**

- Background
- Objectives
- The exercise

#### • Workflow

- Input
- Profiling
- Endpoint
- Category definition
- Data gap filling
  - Navigation to target endpoint
  - Read-across analysis

#### Data Gap Filling Overview

- "Data Gap Filling" module gives access to three different data gap filling tools:
  - Read-across
  - Trend analysis
  - Q)SAR models
- Depending on the situation, the most relevant data gap mechanism should be chosen, taking into account the following considerations:
  - Read-across is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal).
     Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
  - Trend analysis is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
  - "(Q)SAR models" can be used to fill a data gap if no adequate analogues are found for a target chemical.
- In this example, we use read-across approach.

## **Data Gap Filling** Interpreting Read-across

- Read-across prediction is based on an initial group of analogues having "N-Nitroso" and "Urea derivatives" categories defined by Organic functional groups. A group of 53 analogues along with the target chemical is identified.
- Summary carcinogenicity data associated with rat species is available for 30 out of 53 analogue chemicals. This data will be used for filling data gap.
- As mention in the exercise of this tutorial (slide #7) the aim is to predict the carcinogenicity effect of the target by filtering with Ames mutagenicity data. As noted earlier carcinogenicity effect is a complex endpoint depending on DNA and Protein alterations. Based on this the initial group of analogues is further refined using the subsequent subcategorizations starting with:
  - Filter by AMES observed data
  - DNA alerts for Ames, MN, CA by OASIS v.1.4
  - Protein binding alerts for chromosomal aberration by OASIS v1.2

See next screen shots

### **Data Gap Filling** Apply Read across

QSAR Toolbox 3.4.0.17 [Document]									- 6	
		<b>(</b>	<b>—</b>	01010					60	8 🔧 🖥
	ut Profiling	► Endpoint	Category Definition	Data Gap Filling	Report				<u>A</u> bout <u>U</u> p	odate
					e P	ossible data inconsistency		×	The OECD QSAI for Grouping Ch into Categories Developed by Li	R Toolbox nemicals .MC, Bulga
Data C	Filter endpoint tree.			1 [target]	2	Dosed Feed (1 points)	s)	74	6	7
O Read-across				]		Gavage (25 points)	-,			
<ul> <li>Trend analysis</li> <li>(Q)SAR models</li> </ul>	Structure			CH NH3	х ^{№~№} сн.	Intraperitoneal (3 point     Intraperitoneal injection     Other (1 points)     Water (13 points)	s) I (3 points)	ANS NED	Strain Contraction	
Target Endpoint	⊞Ecotoxicolo	gical Information		J		Vivo (28 points)				
Human Health Hazards Carcinogenicity Rat Summary Carcinog	enicity 🛛 🖓 Human Hea	th Hazards				Unknown Type of met	nod (39 points)			
	Acute To:	icity			• • •	Carcinogenicity III (CPE	B) (28 points)			
	— Bioaccum	ulation					AN) (39 points)			
	Carcinoge	meity								
	- ± Cynom	olgus	(470)		Gap	filling scale/unit				
	−⊞Hamste	er 🔰			1	archogenicity III (CPDB)				
	-⊞Mouse		Create pi	rediction by gap f	illing	arcinogenicity I (ISSCAN)				
	Rat				5					
	−⊞Carci	nogenicity			conv 28 fr	erted data	CDDB)			
	-⊟Sumi	mary Carcinogenicity				on scale carcinogenicity III (	CPDD)			
	Die Die	t								
		sed Feed	(1/1)	M. D. 15					M.D. St	
	Do	sed Water	(18/21)	IVI: Positive	Selec	ted [67/67] points		ositive	IVI: Positive	
	Ga	vage	(15/25)	IVI: Positive	IVI: Positive, P	V OK	Cancel	sitive		
	Inti	aperitoneal	(3/3)		L		Current			
	Inti	aperitoneal Injection	(3/3)							M: PC
	-Oti	her	(1/1)	M.D. St			M.D. X	M.D. N	M.D. St	
	— Wa	iter	(13/13)	IVI: Positive			IVI: Positive	IVI: Positive	IVI: Positive	
	Un Long	defined Route of Adn	ninistration	M-0.044	M. 0.0007	M-0.244	M: 0.555 m-//s / )	M: 0 547 (b. 11	Mr. 4. 24 (h 1 h	14.0
	Line Line Line Line Line Line Line Line		(27/49)	IVI: 0.244 mg/kg/da	M: D. 0927 mg/kg/d	IVI: 0.341 mg/kg/da	. IVI: 0.555 mg/kg/da	. IVI: 0.517 mg/kg/da	. IVI: 4.31 mg/кg/day	IVI: 0.0
	L⊞Rhesus		(1/2)		IVI: Positive, 7.18					
	- ⊕Developm	ental Toxicity / Terat	ogenicity		M.B. X. B. X.		M.D. N. D. N.	M.D. N. D. N.	MARK PROV	
	H#Genetic T	oxicity	(37/149)	IVI: Positive, Positive	IVI: Positive, Positiv		IVI: Positive, Positive	IVI: Positive, Positiv	. IVI: Negative, Positi	M: Pc

Click on the cell corresponding to "Summary carcinogenicity" node of endpoint tree;
 Select "Read-across";
 Click "Apply"
 "Possible inconsistency window" appears indicating that more than one unit/scale is mixed. For more details see next slide.

#### **Data Gap Filling** Scale definition

- Carcinogenicity is a "qualitative" endpoint for which the results are presented with categorical data (for example: positive; equivocal; negative).
- Summary carcinogenicity data of the chemicals originate from different databases, coded with different names (for example: data from ISSCAN are: *Positive, Weakly positive, Equivocal and Negative*; data from CPDB database are: *Positive, Negative, and unspecified,* data from ECHA CHEM database came with different data interpretation: *Yes, no effect, not examined etc.*)
- The main purpose of the scales is to unify all data available in the Toolbox databases for a certain endpoint. To this aim, scale conversion of one data to another data type is implemented. Usually more informative scale is transferred to less informative scale.
- Scale definition and conversions associated with summary carcinogenicity data is presented on next three slides (only for illustration)

### **Data Gap Filling** Summary carcinogenicity - scale definition

- Summary carcinogenicity data is presented in four different scales:
  - Carcinogenicity I (ISSCAN) including the following scale members:
    - Positive,
    - Equivocal and
    - Negative
  - Carcinogenicity II (ISSCAN) including the following scale members:
    - Positive,
    - Weakly positive
    - Equivocal and
    - Negative

#### Summary carcinogenicity - scale definition (continued from previous slide)

- Summary carcinogenicity data is presented in four different scales:
  - Carcinogenicity III (CPDB) including the following scale members:
    - Positive,
    - Negative, and
    - Unspecified
  - Carcinogenicity IUCLID (data coming from ECHA Chem DB) including the following scale members:
    - Yes
    - no effect,
    - not examined etc.

# **Data Gap Filling** Summary carcinogenicity - scale conversion



- Scales "Carcinogenicity II, III and Carcinogenicity IUCLID" mentioned on the previous two slides are converted to scale "Carcinogenicity I". As an example, conversion of "Carcinogenicity III" to "Carcinogenicity I" is provided on the right snapshot. The conversion consists of:
  - Positive to Positive
  - Unspecified to Equivocal
  - Negative to Negative
- The data used in current read-across analysis is associated with two scales: Carcinogenicity III and I (see left snapshot). As mentioned above a conversion of III to I has been available. This is the reason the scale "Carcinogenicity I (ISSCAN)" to be used in further read-across analysis.

### **Data Gap Filling Apply Read across**

#### Back to our example

QSAR Toolbox 3.4.0.17 [Document]



2. Click "OK"

#### 1. Select "Carcinogenicity I (ISSCAN)" scale

The OECD QSAR Toolbox for Grouping Chemicals into Categories

#### Read across applied for summary carcinogenicity



Initial data gap filling graph without any subcategorization steps.

## **Data Gap Filling** Subcategorizations

In this example, the following subcategorizations are applied in order to eliminate dissimilar analogues (phase II, see slides 41-42):

- Filter by AMES observed data
- Oncologic Primary classification ("Protein binding alerts for chromosomal aberration by OASIS v1.2" profiler as an alternative subcategorization)
- DNA alerts for AMES by OASIS v.1.4
- DNA alerts for CA and MNT by OASIS v.1.1

See next screen shots

#### Filter by AMES mutagenicity data – subcategorization 1 (new functionality)

- This is a new functionality introduced in Toolbox 3.3.
- It is a functionality within the data gap filling module allowing to filter chemicals by measured data.
- This functionality separates analogues in bins based on observed data.
- Domain of the obtained read-across prediction takes into account filtering by measured data.
- Filtering by data is a multi-step procedure illustrated in the forthcoming sequence of screenshots.

#### Filter by AMES mutagenicity data – subcategorization 1 (new functionality)

GSAR Toolhoy 3.4.0.17 [Document]						1			– 0 ×
USUBCategorization	- 🗆 ×	두 💽 Endpoint data grouper optio	ns	—					💿 😋 🔕 🔧 🖩
Grouping methods DNA alerts for AMES by O DNA alerts DNA alerts Eye irritation	Adjust options Target (N/A)	C Selected descr Select descriptor	iptor: 5						About Update The OECD QSAR Toolbox for Grouping Chemicals
- in vitro mut		Default number of ratio bins		•					into Categories
in vivo mutagenicity (Micro Keratinocyte gene expres		3							Developed by LMC, Bulgaria
Oncologic Primary Classifica							4	5	<u>6</u> 7 ^
Protein binding alerts for 0 Protein binding alerts for s	At least one category	Single category per chemical				CH.	_CH2	_ ~	"°
Respiratory sensitisation	• All categories	Scale/Unit		Data usage	~	\$-v_"	~~~~	\$-v~~~~	
rtER Expert System ver.1	Correlation		•		-	NH2 NEO	NH3 N20	NPs Neo	er o
Skin irritation/corrosion Ex	Analogues	Г				Positivo Dositivo	M: Desitive Desitiv	M: Desitive Desitiv	M: Desitive Desitive M: De
Empiric	(29) (N/A)		Recreate bins			-ositive, rositive	IVI. FUSILIVE, FUSILIV	IVI. FUSILIVE, FUSILIV	
Chemic 5		Units and Scales	Bin constraints:			_		Accept prediction	
Lipinski kule Oasis					Add			Return to matri	
Organic Functional groups					Edit			Recurit to math	1
Organic functional groups					Delete	bour chemicals,		Select/filter	
Organic functional groups, Structural similarity								Subcategorize	
Tautomers unstable						•••••••••••••••••••••••••••••••••••••••		Mark chemicals by	Jescriptor value
<ul> <li>Toxicological</li> <li>Reported dose (HESS)</li> </ul>		Resulting categories list						Filter points by test	: conditions
Experimental								Mark focused chem	ical
> Custom								Mark focused point	\$ nation
								Gap filling appr	oach
Metabolism/Trans					ОК			+ Descriptors/da	ta
Do not account m		arci						Model/(Q)SAR     Calculation opt	ions
Documented Observed Mammalian metabol	1	ary c						Visual options	
Observed Microbial metabolism								Information	
Observed Rat In vivo metabol Observed Rat Liver S9 metab		N.						Miscellaneous	
Simulated									
Autoxidation simulator Autoxidation simulator (alkalin)		Negative			<b></b>				
Dissociation simulation									
1. <b>Open</b> "Subc	ategorize" panel.	The new functio	nality is implem	ented as a sub-	-node of	new end	lpoint tree I	node called "	Experimental"
2. Click on "En	dpoint data" nod	e 3. Analogues	are labeled as l	N/A, because n	o observ	ed data	has been se	elected. Follo	ow the steps
4. Click on "Ad	just options" but	ton 5. "En	dpoint data grou	iper" window a	ppears.				

More details about this window are provided on next slide

Filter by AMES mutagenicity data – subcategorization 1



1. "Select descriptor" button evoke an additional window from where the user could select endpoint (observed data) used further for filtering;

- 2. In our case we mixed up gene mutation data with and without S9;
- 4. Data are distributed into 3 bins by default. Number of bins could be changed; multiple values of single unit/scale are present;6. List of used scales
- 3. Once the endpoint of interest is selected **click on** "Select descriptor" button; 5. "Single category per chemical" produces a single value per chemical when
- 7. Combo-box list with different data usage options. In our case we use highest

values, in case worst case scenario is played 8. **Click** "Recreate bins" to finish the initialization process. 9. Units and scales used 10. A panel with bin constrains of the selected scale 11. **Click** OK to finalize the correlation settings

# Filter by AMES mutagenicity data – subcategorization 1 (new functionality)



After click the OK button on the previous panel where we have filter the chemicals by Ames data the set of analogues have been distributed into 3 bins (default bins in the Endpoint data grouper window) depending on Ames experimental data (1). The target chemical has positive experimental data (2). As seen from the graph the negative (1 analogue)analogue and analogues without Ames data, labeled as N/A (17 analogues) are distributed into positive and negative level of the graph (green dots). The prediction is apparently positive. In this respect analogues with negative and absence of Ames data are eliminated from the graph. The two bins of analogues (with negative Ames and absence of data) are selected by default and eliminated from the graph by clicking on "**Remove** button"(3).

# Filter by AMES mutagenicity data – subcategorization 1 (new functionality)



After analogue elimination, the chemicals with positive Ames data remained only. However, as seen in the set of positive analogues there are two chemicals with negative Carcinogenicity data. The next step is to see why these analogues are negative. See next two slides.

#### Oncologic primary classification – subcategorization 2



In order to see why the outlier chemical is difference to target follow the steps: 1. **Right click** over the outlier chemical 2. **Select** "Information" and then "Difference to target". The profilers according to which the analogue differ from the target are highlighted in red (3). The most appropriate profiler for subcategorization in case of carcinogenicity assessment is "Oncologic primary classification" and "Protein binding alerts for CA". Let's check both of them separately (see next few slides)

THE OLED QSAK TOODOX TOF GLOUPING CHEMICAIS INTO CATEGORIES

#### Oncologic primary classification – subcategorization 2



1. Select "Oncologic Primary classification".

2. As seen there are 4 analogues with different classification than those of the target. 3 out of 4 are categorized as "Not classified" and 1 outlier is categorized as "Nitrogen mustard" category", which do not belongs to the set of categories of the target chemical. Based on this different classification, these four outlying chemicals could be eliminated from the group. 3. **Click** "Remove".

#### Oncologic primary classification – subcategorization 2



1. All the analogue are positive and similar with respect to "Oncologic primary classification".

Protein binding alerts for chromosomal aberration by OASIS v1.2 – (alternative subcategorization)



This slide illustrates an alternative to the "Oncologic" subcategorization.

1. **Open** "Select navigation" panel and **click** "Go back" 2. **Select** "Protein binding alerts for CA by OASIS v1.2"

3. As seen 3* out of all analogues do not have "protein binding alert". They could be eliminated from the graph.

4. There is one additional chemical which has Protein binding mechanism different than the target chemical. 5. **Click** "Remove" to eliminate dissimilar chemicals

*3 – four dots are highlighted in green, because for one of the chemicals there is positive and negative experimental data.
### **Data Gap Filling** Results after subcategorization 2

QSAR Toolbox 3.4.0.17 [Document]									– 0 ×		
QSAR TOOLBOX		Endersint.		01010					💿 🎯 <b>名 🔧</b> 🖥 <u>A</u> bout <u>U</u> pdate		
Filing f Aspoly	Proting	<b>P</b> Enapoint	Category Demicton	P Data Gap Filling	, Keport				The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria		
Data Gap Filling Method				1 [target]	2	5	8	9 11	21 ^		
O Read-across Trend analysis (Q)SAR models	Structure			CH NHS	NHa NHa O CHa			) NFs ( NEO	and the second s		
Human Health Hazards Carcinogenicity Rat Summary Carcinogenicity	<ul> <li>I I I I I I I I I I I I I I I I I I I</li></ul>	ary Carcinogenicity	y (8/18	) M: Positive, Positiv	M: Positive, Positiv	M: Positive, Positiv	M: Positive, Positive	M: Positive, Positive M: I	Positive, Positive M: Pos		
	Accept prediction										
	Pead across prediction of Summary carringenicity										
		taking ti	Select/filter data	Select/filter data							
			observed target	raidesi i osicire (iloy)	realized target raide			Subcategorize	Subcategorize		
	Positive -		•	• •	•	••••	•••••	Mark chemicals by des	Mark chemicals by descriptor value		
								Filter points by test co	onditions		
								Mark focused chemical	I		
	sdo)							Mark focused points	1		
	icity							Go back	ion		
	oden .							Go forward			
	Equivocal -							Go to first			
	ary ci							Go to last			
	1							🗄 Gap filling approa	ch		
	ភ							Descriptors/data     Model/(0)SAR			
								Calculation option	IS		
	Negative -							Visual options     Information			
		-1.50	-1.00 -0.50	0.00 0.50	1.00	1.50 2.00	2.50 3.00	Miscellaneous			
				lo	g Kow						
	Descriptor X: log	) Kow					``	~			

#### Same prediction is obtained after subcategorization by "Protein binding" profiler.

#### Data Gap Filling DNA binding alerts for Ames, MN, CA by OASIS v1.3 – subcategorization 3



As seen all the analogues have same DNA mechanism (SN1, Nucleophilic attack, N-nitroso compounds) as the target chemical. So the prediction is reliable enough, in domain and could be accepted.

3. Click "Accept prediction"

4. Click "Return to matrix"

#### **Data Gap Filling Read-across results**

🦲 QSAR Toolbo	x 3.4.0.17 [Document]										— f	) ×
QSAR	TOOLBOX	→ F Input	FID F Profiling	) Endpoint	Category Definition	01010 01000 Data Gap Filling	► Preport				ලි 🥝 <u>A</u> bout Ur	😢 🔧 🖺 pdate
Filling ∳ <u>A</u> pply											The OECD QSA for Grouping Ct into Categories Developed by I	AR Toolbox hemicals s LMC, Bulgar
	Data Gap Filling Method		Filter endpoint tree			1 [target]	2	3	4	5	6	7 ^
<ul> <li>Read-acros</li> <li>Trend anal</li> <li>(Q)SAR model</li> </ul>	ss ysis ıdels		Structure				N-N 0 CH3	\$ N+2-√_N=0	) ) N= (	\$ ***	SH NH:	ei.
Human Health Ha:	Target Endpoint zards Carcinogenicity Rat Summ	ary Carcinogenicity	⊟Human Healt -⊞Acute Toxi — Bioaccumu -⊟Carcinoger	h Hazards city lation icity	(1/2)		M [.] Positive 4.52					
			-⊞Hamster -⊞Mouse -⊟Rat -⊞Carcin	ogenicity	(1/2) (5/10) (5/15)	M: Positive, 0.818	M: Positive, 1.23					
			-⊞Summ -⊞TD50 -⊞Rhesus	ary Carcinogenicit	y <b>9</b> 0/68) (27/49) (1/2)	M: Positive, Positiv R: Positive M: 0.244 mg/kg/da	M: Positive, Positive M: 0.0927 mg/kg/d M: Positive, 7.18	M: Positive, Positive	M: Positive, Positiv M: 0.555 mg/kg/da	M: Positive, Positiv M: 0.517 mg/kg/da	M: Positive, Positive	M: Pos . M: 0.03
			- HDevelopme - Genetic To - Immunotox - Hirritation / ( - Neurotoxic - HPhotoinduu - HPhotoinduu - HRepeated I - Sensitisati	ntar loxicity / lefa xicity Corrosion ity ed Toxicity Dose Toxicity on	ogenicity (37/149) Aor	M: Positive, Positive	M: Positive, Positiv		M: Positive, Positive	M: Positive, Positiv.	. M: Negative, Positi	M: Pos
1. Rea	ad-across p	prediction	ToxCast Toxicity to Toxicokine	Reproduction ics, Metabolism a	nd Distribution a matrix.							 
53 N-Nitroso <al< td=""><td>ND&gt;Urea derivatives (Organic</td><td>Functional groups)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1/0/0</td><td>)</td></al<>	ND>Urea derivatives (Organic	Functional groups)									1/0/0	)

53 N-Nitroso<AND>Urea derivatives (Organic Functional groups)

### Recap

- This example illustrates the read-across prediction for carcinogenicity of chemical (1-(2-hydroxyethyl)-1-nitrosourea) when filter by Ames experimental data is applied to the initial group of analogues.
- All the analogues were identified based on Organic functional group classification. Two out of four most important functional groups were used for searching analogues: "N-Nitroso" and "Urea derivatives".
- Data gap filling was based on read-across approach due to "qualitative" character of experimental data (positive, negative).
- Read-across analysis was applied for analogues with "Summary carcinogenicity" data associated with rat species.
- A set of 3 subcategorizations were applied for refining the initial group of analogues starting with filtering all the analogues by Ames experimental data.
- Refinement of category continues with two mechanism-based subcategorizations:
  - Oncologic Primary classification (Protein binding alerts for Chromosomal aberration by OASIS v1.2 as an alternative subcategorization)
  - DNA alerts for Ames by OASIS v1.4
- Results of subcategorization shows positive read-across prediction for the target based on positive Ames mutagenicity analogues supported by positive DNA and Protein binding alerts.
- Hence one could conclude that the target chemical may elicit carcinogenicity effect in rats.

#### QSAR TOOLEOX

# **Outlook**

- Background
- Objectives
- The exercise

#### • Workflow

- Input
- Profiling
- Endpoint
- Category definition
- Data gap filling
- Reporting
- Save the prediction

- The report module allows generation of report on the predictions obtained with the Toolbox. This module contains predefined report templates as well as a template editor with which users can define their own user defined templates. The report can then be printed or saved in different formats.
- Generating the report is shown on next screenshots.

QSAR Toolbox 3.4.0.17 [Document]										— d	J X
QSAR TOOLBOX	) Input	► ► Profiling	€ Endpoint	Category Definition	01010 01 1 10100 ► Data Gap Filling	► P Report				ලි 🥥 <u>A</u> bout U	🔕 🔧 📳 pdate
Filing \$ Apply										The OECD QS/ for Grouping C into Categories Developed by	AR Toolbox Ihemicals s LMC, Bulgaria
Data Gap Filling Method		Filter endpoint tree			1 [target]	2	3	4	5	6	7 ^
<ul> <li>O Read-across</li> <li>● Trend analysis</li> <li>● (Q)SAR models</li> </ul>		Structure				NH2 N-N O CH3	5H 5 NF 5 120	°, ⊂ ^{CW} *		Strain and and and and and and and and and an	*1
Target Endpoint Human Health Hazards Carcinogenicity Rat Summar	ry Carcinogenicity	⊟Human Healt -⊞Acute Toxi -—Bioaccumu -⊖Carcinoger	h Hazards city Iation icity								
		-⊞Cynomolgu ⊞Hamster -⊞Mouse -⊟Rat +⊞Carcinog	gus ogenicity	(1/ (5/1 (5/1	2) 0) 5) M: Positive, 0.818 .	M: Positive, 4.52 M: Positive, 1.23					
		-⊞Summ -⊞TD50 -⊞Rhesus	ary Carcinoge	(30/6 (27/4 (1/	8) M: Positive, Positiv R: Positive 9) M: 0.244 mg/kg/da 2)	Copy Explain	M: Positive, Positive	M: Positive, Positiv M: 0.555 mg/kg/da	M: Positive, Positiv M: 0.517 mg/kg/da	M: Positive, Positive M: 4.31 mg/kg/day	M: Pos . M: 0.03
		- EDevelopme - EGenetic To - Immunotox - Elrritation / C - Neurotoxic - Photoinduc	icity corrosion ity ed Toxicity	(37/14	9) M: Positive, Positiv	Delete prediction Display prediction do Explain prediction Edit prediction info Report	main 2	M: Positive, Positive	M: Positive, Positiv	M: Negative, Positi	M: Pos
		⊞Repeated [     ⊡Sensitisatii     ToxCast     ⊡Toxicity to     ⊡Toxicokinet     ⊞Profile	Dose Toxicity on Reproduction ics, Metabolism and	A Distribution		UCLID5					
			_								

**1. Click** on the cell with prediction

2. Perform Right click and Select Report



The system automatically switch to the Report module, where the generated report can be seen.

٥ × QSAR Toolbox 3.4.0.17 [Document] 멾  $\langle + \rangle$ Û Ŧ QSAR TOOLBOX About Update Input Profiling Endpoint ➤ Category Definition → Data Gap Filling Report The OECD QSAR Toolbox for Grouping Chemicals H 9 Þ. ø ٨ into Categories Close Save as Register Developed by LMC, Bulgari Prediction [1] Available data to report Predictions QSAR Toolbox prediction based on read-across (0)5ARs Categories Prediction of Summary carcinogenicity for 1-(2-hydroxyethyl)-1-nitrosourea Summary arget chemical (Positive) is predicted from category members using read-across based on 11 values (Positive x11) from 5 nearest neighbours compared by prediction descriptors. Category members are single chemicals or mixtures and are selected based on the profile of the target chemical. Only chemicals Available report templates having experimental data are listed in the category. Standard (predefined) The target chemical FALLS within applicability domain of the prediction (see Section 4.3 for details). QSAR Model Reporting Format (QMRF v.3.4) QSAR Toolbox Category Report (CCRF v.3.4) The data used for calculating the current prediction is taken from 15 experimental values selected from the following database(s): Custom (user defined) Editable copy of QSAR Model Reporting Format (QMRF v.3.4) 1. Carcinogenic Potency Database (CPDB) 2. Carcinogenicity&mutagenicity ISSCAN Editable copy of QSAR Toolbox Category Report (CCRF v.3.4) Editable copy of QSAR Toolbox Prediction Report (TPRF v.3.4) Below is a summary table for endpoint & descriptor values for the target chemical and the category members. Experimental values from data matrix are presented in bold font, Recalculated endpoint values (if required by selected data usage option in Gap Filling) are presented in italic font. Recalculated endpoint values based on experimental data only are presented in bold and italic font. Endpoint(s) Descriptor(s) Human Health 2 Hazards; log Kow Carcinogenicity Carcinogenicity I (ISSCAN) Target chemical Positive (3) -1.04 Cat. member No. 1 Positive (2) -0.520 show only relevant templates Cat. member No. 2 Positive (2) -1 61 1. Summary report 1/0/0

2. Table with for endpoint and descriptors of the target and chemicals within the category



#### QSAR TOOLEOX

# **Outlook**

- Background
- Objectives
- The exercise

#### • Workflow

- Input
- Profiling
- Endpoint
- Category definition
- Data gap filling
- Reporting
- Save the prediction

# **Saving the prediction result**

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc., on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots.

## **Saving the prediction result**



1. **Go** to "Input" section 2.**Click** on "Save" button 3. **Define** name of the file; 4. **Click** "Save" button

### **Open saved file**



## **Open saved file**



53 N-Nitroso<AND>Urea derivatives (Organic Functional groups)