QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Predicting developmental and reproductive toxicity of Diuron (CAS 330-54-1) based on DART categorization tool and DART SAR model

QSAR TOOLEOX

Outlook

• Background

- Objectives
- The exercise
- Workflow

Background

 This is a step-by-step presentation designed to take the user through the workflow for filling data gap for reproductive and developmental toxicity by read-across based on an analogue approach.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow

Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

- Identify analogues of target chemical by applying DART scheme via two different ways:
 - For primary categorization
 - For subcategorization
- Retrieve experimental results available for those analogues.
- Fill data gaps by read across.
- Support read-across prediction by DART model.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow

The exercise

- In this exercise we will predict the developmental and reproductive (DART) toxicity of 3-(3,4-dichlorophenyl)-1,1-dimethylurea CAS 330-54-1 (Diuron).
- Two scenarios for defining the initial category of similar analogues will be applied:
 - Initial category identified by endpoint specific DART scheme
 - Initial category identified by empiric Organic functional group (OFG) with followed by subcategorization by DART scheme
- Gather available experimental data for the target chemical and identified analogues.
- Apply read across prediction based on analogue approach.
- Apply external DART model.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases
- Chemical IDs such as EC number, Einecs number
- Query Tool

B.Group of chemicals

- User List/Inventory
- Specialized Databases

Getting Started

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX".
- Click on "Input" (see next screen shot).

Chemical Input Screen Input target chemical by CAS#

QSAR Toolbox 3.3.0.152 [Document]		Taxas & With	NAME AND ADDRESS OF	No. of Concession, Name	
			01010		🗇 🕲 😒 🔧 🗒
QSAR TOOLBOX			Tótoó		<u>A</u> bout <u>U</u> pdate
Documen Documen New Open Close	Input Profiling Single Chemic	al ChemiDs	Chemical List	▶ Keport	The OECD QSAR Toolbox for Grouping Chemicals into Categories
2		1			Developed by LMC, Bulgana
Documents	Filter endpoint tree Structure ESubstance Identity EPhysical Chemical Properties Environmental Fate and Trans Ecotoxicological Information Human Health Hazards	port			
select filter type ▼ Create Apply	1. Click o	on "CAS#″			

Chemical Input Screen Enter CAS# 330-54-1

🦲 Search b	y CAS #						×			
330-54-1 Tautomeric sets Search OK Cancel Select All Clear All Selection Selected 1 of 3										
Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D			
1. Yes	330-54-1	CN(C)C(=		1: 2: 3: 4: 5: 6: 7: 8: 9: 10 11	1:: High 1:: A 2:: A 3:: Ba 4:: Bi 5:: Da 6:: EC 7:: EC 8:: Hy 9:: M 10:: F 11:: F 12:: 1	1:: High A 1:: U: A 2:: A A 2:: A A 3:: To A 4:: EC A 5:: kM 6:: A 7:: RI 8:: Bi 9:: M 10:: F 11:: H 12:: E	: High A			

1. Enter the CAS# in the blank field; 2. Click "Search" button; 3. Press "OK"

Chemical Input Target chemical identity

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction.

🦲 Search I	by CAS #						×
330-	54-1	-	Tautomeric sets O Search		🖊 ОК	X Can	el
Select	All Cle	ar All I	Invert Selection Selected 1 of	1			
Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D
1. Yes	330-54-1	CN(C)C(=		1: 2: 3: 4: 5: 6: 7: 8: 9: 10	1:: High 1:: Au 2:: Au 3:: Ba 4:: Bi 5:: Du 6:: Eu 7:: Eu 8:: Hy 9:: M 10:: F 11:: F 12:: T	1:: High A 1:: U: A 2:: Au A 3:: To A 3:: To A 4:: Eu A 5:: kh 6:: Au 7:: Ri 8:: Bi 9:: M 10:: F 11:: H 12:: E	: High
•					101	101	Þ

Chemical Input Target chemical identity

- Double click "Substance Identity" displays the chemical identification information.
- The user should note that existing names of the target chemical are presented in different colours. This indicates the reliability of relation CAS-Name-SMILES for the target chemical (see next screen shots).
- The workflow on the first module is now complete, and the user can proceed to the next module.

Chemical Input Target chemical identity

*More details about color legend are provided on next slide

Chemical Input Chemical identity

- The colour code indicates the reliability of the chemical identifier:
- **Green**: There is a high reliability between the identifier and the structure. This colour is applied if the identifier is the same in several quality assured databases.
- Yellow: There is only a moderate reliability between the identifier and the structure. The colour is applied if the identifier is the same in several databases for which the quality assurance could not be established.
- **Red**: There is a poor reliability between the identifier and the structure. The colour is applied if the identifier is allocated to different structures in different databases.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Side-Bar to Profiling

- For most of the profilers, background information can be retrieved by highlighting one of the profilers and clicking on "View".
- Detailed information for DART v. 1.0 scheme (Developmental and Reproductive toxicity) is provided on next slide.

Developmental and Reproductive Toxicity (DART) Background

- DART scheme is an adaptation of a framework for identifying chemicals with structural features associated with the potential to act as reproductive or developmental toxicants outlined in the journal of Wu S et all [1].
- It is implemented as a pilot endpoint specific scheme, developed on the basis of the combination of known modes of action (MOA) and associated structural features.
- DART scheme include 25 categories and 125 sub-categories organized as a decision scheme. Definition of the categories are based on a detailed review of 716 chemicals that have been evaluated for their DART potential effect. Mechanistic interpretation and reliability is provided for each category.
- DART scheme is implemented as a profiling/categorization tool and as a SAR model.
- It can be used both as a component of a screening system to identify chemicals of potential concern, and as part of weight of evidence decisions based on structure-activity relationships (SAR), to fill data gaps without generating additional test data.
- Output of the scheme indicate that the chemical of interest is associated with chemical structures:
 - known to have DART Known precedent reproductive and developmental toxic potential
 - not known to have DART Not known precedent reproductive and developmental toxic potential
 - which have structural features outside the domain of the DART decision tree *Not cover by the decision tree.*

^{1.} Wu S, Fisher J, Naciff J, Laufersweiler M, Lester C, Daston G, Blackburn K. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chem Res Toxicol. 2013 Dec 16;26(12):1840-61.

4. Click "Advanced" to see structural boundaries coding the rule

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Profiling

Application of endpoint specific profiling schemes

- In this example profiling by DART and OFG is applied in order to analyse the potential to cause DART toxicity and to identify the general structural fragments available in the molecule, which further could be used for categorization.
- Follow the steps:
 - Select DART v1.0
 - Select two Organic functional group profilers
 - Click Apply

Profiling Apply related profiling schemes

	(01010		5 🙆 🙁 🔧 🗒
QSAR	3	×					Tótoó		<u>A</u> bout <u>U</u> pdate
Profiling Apply	Profiling Sch <u>N</u> ew <u>Vi</u> ew	iemes X Delete	• Input) Profiling	▶ Enapoint	Category Derinition) Data Gap Filling	• керот	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
	Profiling meth	hods		Filter endpoint tree		1 [target]]		
Select All Acute Aquai Bioaci Bioaci Biode Carcin	Unselect All aquatic toxicity MOA tic toxicity dassifi cumulation - meta gradation fragme nogenicity (genoto)	Invert A by OASIS	About	Structure ⊞Substance Identity	,	",e-(^{6%} " 0-() 0-() 0-()	I		
	scheme v. 1.0 alerts for AMES by OA	ASIS v. 1.4		⊞Physical Chemica	I Properties				
DNA	alerts for CA and MNT	T by OASIS v. 1. 1	L	Environmental Fat Ecotoxicological II	e and Transport				
Eye ir	ritation/corrosion Exc ritation/corrosion Incl	dusion rules by B dusion rules by B1	fR	⊞Human Health Haz	zards				
in vitr	o mutagenicity (Ames o mutagenicity (Micro	s test) alerts by 1 nucleus) alerts b	ISS IY ISS			1			
	inocyte gene express ogic Primary Classifica	sion ation							
	in binding alerts for C	Chromosomal abe	rration by (
	ratory sensitisation		Dy OASIS V						
rtER I	Expert System ver. 1	aing - USEPA							
Skin ir	ritation/corrosion Exc ritation/corrosion Inc	dusion rules by B Iusion	offR						
Empiric Chem	ical elements	2							
Group	os of elements ki Rule Oasis	4							
Organ	nic Functional groups	(norted)							
Organ	nic functional groups ((US EPA)							
Crgar	nic functional groups,	Norbert Haider ((checkmol)						
	Metabolism/Transf	formations							
Select All	Unselect All	Invert	About						
Obee	rued Mammalian meta	holicm							
1. Select the "DART v1.0 profiling scheme"									

- 2. **Select** two "Organic functional groups" profilers
- 3. Click "Apply"

Profiling Outcome of profiling results

Profiling Profiling Schemes	Tiput > Profiling	Endpoint Category D	nition → Data Gap Filling	► Report	Outcome of DART profiling results appears in the box under the chemical structure organized in several categories marked in red color distributed in a few rows. The first row shows general category "Known" and indicate if the chemical has the
Profiling methods Select All Unselect All Invert About Biodegradation fragments (BioWIN MITT A Carcinogenicity (genotox and nongenot DART scheme v.1.0 DNA alerts for AMES, MN and CA by OA Eye irritation/corrosion Exclusion rules b eye irritation/corrosion Exclusion rules t b in vitro mutagenicity (Micronucleus) alerts in vitro mutagenicity (Micronucleus) Profiling results Chemical profile DART scheme v.1.0	Filter endpoint tree Structure Bubstance Identity Physical Chemical Properties Environmental Fate and Transport	1			potential to cause reproductive and developmental toxic effect. The rest three entries indicates the specific DART category (e.g Polyhalogenated benzene derivatives 8c) of the chemical. Some of the DART category are hierarchically organized and presented in in more than one entry. This is the case with sub- category "N-aryl substituted urea" part of more general "Non-steroid nucleus" category. More details about DART category is given on next slide (follow the steps given the box below)
 Known precedent reproductive of the constraint of the	ve and developmental toxic potential estrogen receptor (ER) and androgen rec estrogen receptor (ER) and androgen rec rivatives (8c)	Known precedent Non-steroid nuclet Non-steroid nuclet Polyhalogenated I Aryl Aryl halide Urea derivatives Aryl halide Urea derivatives Urea derivatives	productive and developmen derived estrogen receptor (nzene derivatives (8c)	tal toxic potential [ER] and androgen rec [ER] and androgen rec Cop Expl Con	eptor (AR) septor (AR) >> N-aryl substituted urea, ca y lain mpon tt Profile Statistics
1. Select the cell 4. Click "Details"	with profiling re	sult 2. Rig	ht Click an	d select	"Explain" 3. Select category

Profiling Explain of profiling results

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Profiling Interpretation of profiling results

- Profiling result shows that the target chemical is classified as:
 - "Known precedent for DART effect" based on classification into two DART sub-categories: "Polyhalogenated benzenes" and "N-aryl substituted ureas". Will be further investigated.
 - "Aryl, Urea derivatives and Aryl halide" by OFG, which will be used further for identifying analogues.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint

Endpoint Overview

• "Endpoint" refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox.

 Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).

Endpoint Case study

- In this example, we limit our data gathering to two toxicity endpoints: developmental and reproductive toxicity.
- DART database has been implemented into the Toolbox 3.3
- Developmental and Reproductive Toxicity (DART) database 716 chemicals with 1430 data points separated as follows:
 - Developmental toxicity (716 data points)
 - Reproductive toxicity (714 data points)
- In this example, we collect data from the DART database containing experimental results for developmental and reproductive toxicity(DART).
 - Click on "Endpoint" in the Toolbox workflow.
 - Expand the "Human Health Hazards" section
 - Click on the box to select that database.
 - Click on "Gather data" (see next screen shot).

Endpoint Gather data

					01010		 5 🕤 🔧 📳
QSAR TAALBOX				1	10100		<u>A</u> bout <u>U</u> pdate
	▶ Input	Profiling	▶ Endpoint		ition 🔹 🕨 Data Gap Filling	Report	
Pata 4 port	Export	De	elete T	automerize	/		The OECD QSAR Toolbox
	a wi	*	*	4			for Grouping Chemicals
Gather Import IUCLID5	Export IUCLIDS	5 Database	Inventory Da	tabase			Developed by LMC Bulgaria
		_		1			Developed by LMC, Bulgaria
Databases		Filter endpoint tree		1 [target]			
Select All Unselect All Invert About							
Physical Chemical Properties				H10-6			
Environmental Fate and Transp	2	Structure					
Ecoloxicological Information							
🖌 🖉 Human Health Hazards				°			
Acute Oral Toxicity database (ChemIDP	Plus)	ISubstance Ident	lity				
Bacterial mutagenicity ISSSI Y		Dhysical Chamie	ad Dropartian				
Carcinogenicity&mutagenicity ISSCAN	3		cal Fropenties				
Cell Transformation Assay ISSCTA		Environmental F	ate and Transport				
Depdritic cells COLTRA		±Ecotoxicological	I Information				
Developmental & Reproductive Toxicity	(DART)	⊞Human Health H	lazards				
Developmental toxicity ILSI		⊞Profile					
Estrogen Recentor Binding Affinity OAS	215						
Eve Irritation ECETOC							
Genotoxicity OASIS							
Keratinocyte gene expression Givaudan	n						
Keratinocyte gene expression LuSens							
Micronucleus ISSMIC							
MUNBO non-cancer FESA							
Rep Dose Tox Fraunhofer ITEM							
Repeated Dose Toxicity HESS							
Rodent Inhalation Toxicity Database							
Skin Iirritation							
Skin sensitization							
ToxCastDB							
Toxicity Japan MHLW							
	`						
Inventories							

- 1. Go to "Endpoint"
- 2. Expand the "Human Health Hazards" section
- 3. Select database related to the target endpoint: "Developmental & Reproductive Toxicity (DART)"
- 4. Click "Gather"
Endpoint Gather data

Click "OK" to extract data from database
 The message informs you that 2 data points are gathered for the target chemical. Click "OK"

Endpoint Gather data

	F) [12	A		01010			5 🛛 🗶 🔧 🗒
) Endroint	Category Definition	Data Gan Filling	N Report		<u>A</u> bout <u>U</u> pdate
Data Import Gather Import IUCLID5 Export	Export Liucup Database	Delete Tau Minimum Carter Inventory Data	utomerize	y bata dap ming	Ркерик		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Databases	Filter endpoint tree		1 [target]				
Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information	Structure			His- 			1
 Human Health Hazards Acute Oral Toxicity database (ChemIDPlus) 		-12.			N	leasured data for the target	
Bacterial mutagenicity ISSSTY Carcinogenic Potency Database (CPDB)		nuty			ар	peared on data matrix. There	
Carcinogenicity&mutagenicity ISSCAN Cell Transformation Assay ISSCTA	⊞Physical Chen	nical Properties			are	positive and negative data for	
Dendritic cells COLIPA Verelopmental & Reproductive Toxicity (DART)	⊞Environmental ⊞Ecotoxicologic	al Information			🚺 the	e target chemical. We will try	
Developmental toxicity ILSI ECHA CHEM	⊟Human Health	Hazards			to	reproduce the measured data	
ECOTOX Estrogen Receptor Binding Affinity OASIS	Bioaccumula	ty ation	•		-	by read-across	
Eye Irritation ECETOC Genotoxicity OASIS	- ECarcinogenio	city			L		J
Human Half-Life	Developmen	tal loxicity / leratoge		K			
Keratinocyte gene expression Givaudan	Developm	ental and Reproductiv	Millerum development	antal astantial			
Micronucleus ISSMIC	Developm	ental loxicity (1/1	1) IVI. Known developm	ientai potentiai			
Micronucleus OASIS	Reproduct	ive Toxicity (1/1	 M: Not known repro- 	ductive potential			
MUNRO non-cancer EFSA	Teratogeni	icity (FDA TERIS)					
Rep Dose Tox Fraunhofer ITEM	-⊞Genetic Toxi	icity					
Repeated Dose Toxicity HESS	-Immunotoxic	sity					
Rodent Inhalation Toxicity Database	- HTIrritation / Co	prosion					
Skin sensitization	Neurotevieit		*				
Skin sensitization ECETOC	TREUTOLOXICIL	y 					
ToxCastDB	-+±iPnotoinduce	d loxicity					
	Repeated Do	ose Toxicity					
Inventories	- ⊕Sensitisation	n [~]	-				
	-ToxCast						
Select All Unselect All Invert About	-⊞Toxicity to R	eproduction					
Canada DSL		s. Metabolism and Di	1				
DSSTOX	⊞Profile	,					
ECHA PR	V						

Recap

- In the first module, you have entered the target chemical being sure of the correctness of the structure.
- In the second module, you have profiled the target chemical and found that the target could cause DART effect. It is categorized as known precedent for developmental and reproductive toxicity. This is due to the chemical pertaining to two chemical classes associated with DART toxicity.
- In the third module, you have found that there are two experimental data for the target structure: positive developmental and negative reproductive. We will try to reproduce them using read across analysis.
- Before proceeding with the "Data Gap Filling" module, the user should define a category with similar analogues. Two scenarios are played for identifying analogues:
 - DART scheme used as a categorization tool (used for phase I, see next slides)
 - DART scheme used in subcategorization procedure (used for phase II)
- Click on "Category Definition" to move to the next module.

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition
 - Overview
 - Scenario 1
 - Scenario 2

Category Definition Grouping methods

- The forthcoming 4 slides provide basic information about definition and procedure of "Category definition".
- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.
- Detailed information about grouping chemical (Chapter 4) could be found in document "Manual for Getting started" published on OECD website:

http://www.oecd.org/chemicalsafety/riskassessment/theoecdqsartoolbox.htm

Basic guidance for category formation and assessment

Suitable categorization phases:

- 1. Structure-related profilers.
- 2. Endpoint specific profilers (for sub-cat).
- 3. Additional structure-related profilers, if needed to eliminate dissimilar chemicals (to increase the consistency of category) (e.g. chemical elements).

Performing categorization:

- 1. Categorization phases should be applied successively.
- 2. The application order of the phases follows three general stages but variations within them are case specific.
- 3. More than one category can be used within one phase for forming one final category.
- 4. Some of the main phases could be skipped if consistency of category members is reached.

Graphical illustration of suitable categorization phases is shown on next slide.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Suitable Categorization/Assessment Phases Phase I. Structure based **US EPA Categorization OECD** Categorization Organic functional group Structural similarity ECOSAR **Repeating Phase I due to Multifunctionality of chemicals** Phase II. Mechanism based DNA binding mechanism ٠ Protein binding mechanism Genotoxicity/carcinogenicity DART v1.0 Cramer rules Verhaar rule ٠ Skin/eye irritation corrosion rules ٠ Repeated dose profiler (NITE) Metabolism accounted for **Phase III. Eliminating dissimilar chemicals Apply Phase I – for structural dissimilarity** Filter by test conditions – for Biological dissimilarity

Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

Subcategorization Endpoint Specific

Category Definition Grouping methods – phase I

Suitable Categorization/Assessment Phases

Phase I. Structure based

- US EPA Categorization
- OECD Categorization
- Organic functional group
- Structural similarity
- ECOSAR

Broad grouping Endpoint Non-specific

Phase I categorization in Toolbox

*Neutral organic category include chemicals having different functionalities as alcohols, ketones, ethers etc. In this respect the basic principle illustrated on slide 41 that structurally similar chemicals may elicit similar effects would not be preserved, because Neutral organic mixed many different functionalities.

**OFG is used for primary categorization, because the two basic functionalities available within the molecule: "Ureas" and "Aryl halides" will be preserved in the group of identified analogues, while the ECOSAR omits the "Aryl halide" functionality and identifies "Substituted ureas" only.

Category Definition Grouping methods – phase II

Suitable Categorization/Assessment Phases Phase II. Mechanism based

- DNA binding mechanism
- Protein binding mechanism
- DART v1.0
- Repeated dose profiler (NITE)

Phase II categorization in Toolbox

_				
ilter endpoint tree		1 [target]	-	
	Structure	$u_{i}c - \int_{0}^{0} u_{i} u_{i} du_{i} du_{$		
E	∃Substance Identity			
B	∃Physical Chemical Properties			
E	∃Environmental Fate and Transport			
B	⊞Human Health Hazards			
E	Profile			
	Endpoint Specific			
	—DART scheme v.1.0	Known precedent reproductive and de Non-steroid nucleus derived estrogen Non-steroid nucleus derived estrogen Polyhalogenated benzene derivatives	←	5 analogues are identified
	DNA alerts for AMES, MN and CA by OASIS v.1.3	No alert found		_
Protein binding alerts for Chromosomal aberration		No alert found		In this case it is not reasona
				Protein binding profiler for c

Subcategorization Endpoint specific

The OECD QSAR Toolbox for Grouping Chemicals into Categories

se it is not reasonable to use DNA or inding profiler for categorization.

Category Definition Grouping methods

- Based on these classifications and basic guidance for grouping chemicals explained on the previous slides, two scenarios for identifying similar analogues have been applied in further read-across analysis:
 - Scenario 1: DART v1.0 scheme used as a categorization tool (applied for primary categorization - phase I).
 - Scenario 2: OFG is used for primary categorization with forthcoming subcategorization by DART scheme (applied for subcategorization - phase II).
 - Identifying analogues based on two scenarios mentioned above will be applied in further read-across analysis.

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition
 - Overview
 - Scenario 1
 - Scenario 2

Category Definition Grouping methods

- Based on these classifications and basic guidance for grouping chemicals explained on the previous slides, two scenarios for identifying similar analogues have been applied in further read-across analysis:
 - Scenario 1: DART v1.0 scheme used as a categorization tool (applied for primary categorization - phase I).
 - Scenario 2: OFG is used for primary categorization with forthcoming subcategorization by DART scheme (applied for subcategorization - phase II).

Scenario 1: DART scheme used as a categorization tool

3. **Click** "OK" to confirm the defined categories for the target chemical; 4. Five analogues are identified. **Click** "OK"

Scenario 1: DART scheme used as a categorization tool

Read data?			1
All endpoints	Choose	V from Tautomers	V OK X Cancel

Click "OK" to extract data for the analogues from DART database
 10 data points are gathered for the identified 5 analogues. Click "OK"

Scenario 1: DART scheme used as a categorization tool

The experimental results for the analogues appeared on datamatrix

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition
 - Overview
 - Scenario 1
 - Apply read-across
 - Scenario 2

Read-across applied for developmental tox Scenario 1: DART scheme used as a categorization tool

Investigated endpoint: Developmental toxicity

implemented into the system with original scale called "DART toxicity original". A less informative scale "DART toxicity" has been introduced. Also a scale conversion from original (more informative) to the less informative scale has been implemented. In our case we will use the less informative scale. Select "DART toxicity" scale. 6. **Click** "OK"

Read-across applied for developmental tox Scenario 1: DART scheme used as a categorization tool

Investigated endpoint: Developmental toxicity

All analogues are positive and similar with respect to DART endpoint. Let's check how similar are they with respect to "Structural similarity". Follow the steps:

1. **Open** "Select/filter data"; 2. **Click on** "Subcategorize" ; 3. **Select** "Structural similarity"; The following similarity options are used in the subcategorization. **Click** on "Adjust options" button (4) to see the options: Dice, Atom pairs and atom type as atom characteristics are selected only.

The analysis shows that all analogues are similar above 50 % with respect to the target. Continue the workflow with accept the prediction Follow the stepses 5. Click "Accept prediction"; 6. Click "Return to matrix" 54

Read-across applied for reproductive tox Scenario 1: DART scheme used as a categorization tool

Investigated endpoint: Reproductive toxicity

1. Positive prediction obtained for endpoint "Developmental toxicity" reproduces the positive observed data. Further read-across analysis continues with next endpoint "Reproductive toxicity". Follow the steps:

- 2. Select the cell corresponding to "Reproductive toxicity" endpoint; 3. Select "Read-across";
- 5. In our case less informative scale is used: "DART toxicity":
- 6. Click "OK"
- 4. Click "Apply";

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Read-across applied for reproductive tox Scenario 1: DART scheme used as a categorization tool

Investigated endpoint: Reproductive toxicity

Negative observed data is available for the target chemical 2. All analogues are positive. Lets check how similar are the analogues with respect to structural similarity 3. **Open** "Subcategorize" 4. **Select** "Structural similarity" (options used in the read-across prediction are displayed on slide 54, same as in the previous example). All 4 analogues are similar above 50% with respect to the target chemical.

Read-across applied for reproductive tox Scenario 1: DART scheme used as a categorization tool

Investigated endpoint: Reproductive toxicity

Recap

- In this step of the workflow scenario 1 has been applied:
 - Scenario 1: DART scheme applied as a primary categorization
- Read-across results shows:
 - Positive prediction for developmental toxicity reproduces positive observed data.
 - Positive prediction for reproductive toxicity could not explain the negative observed data.
- The workflow continues with second categorization scenario.

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition
 - Overview
 - Scenario 1
 - Apply read-across
 - Scenario 2

Category Definition Grouping methods

- Based on these classifications and basic guidance for grouping chemicals explained on the previous slides, two scenarios for identifying similar analogues have been applied in further read-across analysis:
 - Scenario 1: DART v1.0 scheme used as a categorization tool (applied for primary categorization - phase I).
 - Scenario 2: OFG* is used for primary categorization with forthcoming subcategorization by DART scheme (applied for subcategorization - phase II).

^{*}OFG is used for primary categorization in this case, because the two basic functionalities available within the molecule: "Ureas" and "Aryl halides" will be preserved in the group of identified analogues, while the ECOSAR categorization omits "Aryl halide" functionality and identifies "Substituted ureas" only (see slide 44).

Scenario 2: OFG is used for primary categorization with forthcoming subcategorization by DART scheme

	<u></u>		01010				o o o o o
			10100				<u>A</u> bout Update
3 Pinput	P Proming P Enapoint	Category L erinition		• кероп			
Categorize	Delete	- 1					for Grouping Chemicals
Defen Difer uith metholism Cohertensian Conhine							into Categories
Denne Denne with metabolism Subcategorize Combine	Ciustering <u>D</u> elete D <u>e</u> lete All						Developed by LMC, Bulgaria
Grouping methods	Filter endpoint tree	1 [target]	2	3	4	5	
arcinogenicity (genotox and nongenotox) alerts by ISS			****		.04.	5%	
DIARI scheme V. 1.0		HIC-H	l.ye	сн _а сн _а	**+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r;c-{}_=0	
DN A alerts for CA and MNT by OASIS v.1.1	Structure		£7		~~~		
Eye irritation/corrosion Exclusion rules by BfR			` (D)	\ <u></u> \	Ø-	• (Q)-•	
Eye rritation/corrosion Inclusion rules by BfR			6		ći	ć	
in vito mutagenicity (Ames test) alerts by ISS							
Keratir povte gene expression							
Oncolog ic Primary Classification	Environmental Fate and Transport						
 Protein Linding alerts for Chromosomal aberration by OAS 	End to the second se						
Protein binding alerts for skin sensitization by OASIS v1.4	EHuman Health Hazards				ſ		
Respirato y sensitisation		*				Define category name	
rtER Expert System ver. 1 - USEPA	Bioaccumulation	*					
Skin irritation /corrosion Exclusion rules by BfR						Category name (8 chemicals	 ND>Urea derivatives (Organic Functional groups)
Skin irritation corrosion Inclusion rules by BfR		•	Organic Fur	nctional groups			
Empiric Chemical elements	Developmental Toxicity / Teratog		Target(s) profiles	5 1			A OK Cancel
- Groups of elements	Developmental and Reproducti	11.12	Aryl				
Linindi Aule Oalis	Developmental Toxicity (5/6) D: Resitive	Aryl halide				
Organic Functional groups	Baproductivo Toxicity (5	M: Not known repr	M· Kn			1: Known reprodu	_
Organic Functional groups (nes)	Terretegenieity (EDA TEDIS)					n. renovin roprodu	5
Organic functional groups (OS P	Teratogenicity (FDA TERIS)						
- Structural similarity			4				
Tautomers unstable	Immunotoxicity		All profiles				
Toxicological	Hellrritation / Corrosion		Acetal			^	
 Custom 	- Neurotoxicity		Acid anhydride				
L Test Profiler	—		Acid anhydride, m	ixed phosphonic			
< · · ·	-Repeated Dose Toxicity		Acridine			v	
Defined Categories	-⊞Sensitisation ^{A0}	·	Combine profiles	logically In	ivert result 🛛 🗸 (OK	
✓ • Document	ToxCast		AND	OR St	rict 🖌		
i[5] Known precedent reproductive and developmental toxic p					X Ca		
	TTT-rischingting Matcheling and						
1 Back to "Categor	v definition"		2 Sela		. ″.	3	Click "Define"

- 4. Click "OK" to confirm the identified categories for the target chemical
- 5. Eight analogues are identified. Click "OK"

Scenario 2: OFG is used for primary categorization

Read data?			
All endpoints	O Choose	✓ from Tautomers	V OK X Cancel

QSAR Toolbox 3.3.0.152	×
16 data points gathered across 8 chemicals.	
	ОК
	2

Click "OK" to extract data for the analogues from DART database
 16 data points are gathered for the identified 8 analogues. Click "OK"

Category Definition Scenario 2: OFG is used for primary categorization

The experimental results for the analogues appeared on datamatrix

1. As mention on the previous slides there are observed data for the target, according to the two endpoints. We will try to reproduce it.

Read-across applied for developmental tox Scenario 2: OFG is used for primary categorization

Investigated endpoint: Developmental toxicity

Read-across applied for developmental tox Scenario 2: OFG is used for primary categorization

Investigated endpoint: Developmental toxicity

All analogues are positive. Let's check how similar are they with respect to endpoint specificity through applying DART profiling scheme. Follow the steps:

1. **Open** "Select/filter data"; 2. **Select** "Subcategorize" 3. **Select** "DART scheme v1.0". There are 2 analogues having different DART toxicity that the target. They will be eliminated; 4. **Click** "Remove". Now all analogues are positive and consistent with respect to structure (OFG) and endpoint specificity (DART); 5. **Click** "Accept prediction"; 6. **Click** "Return to matrix"

Read-across applied for developmental tox Scenario 2: OFG is used for primary categorization

Investigated endpoint: Reproductive toxicity

	[음] (Ô)			🕥 🕲 😣 🔨 🚍 About. Update
→ Input	▶ Profiling ▶ Endpoint ▶ Cat	tegory Definition	▶ Report	
Filing Apply				The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Daty 3 lethod	Filter endpoint tree	1 [target]	2 3 4	5 6 7
O Read-across			Possible data inconsistency	
Trend analysis	Structure	wid-n mu	⊳ · Scale/Unit	
Q)SAR models				
Target Endpoint				
Human Health Hazards Developmental Toxicity / Teratogenicity	Substance Identity			
Reproductive Toxicity	HPhysical Chemical Properties Environmental Eate and Transport			
	Environmental rate and mansport Ecotoxicological Information			
	⊟Human Health Hazards			
	-Bioaccumulation			
	- Carcinogenicity	Startii 🔺 👔		
	-Developmental Toxicity / Teratogenicity		Gap filling scale/unit	
	Developmental and Reproductive Toxic		DART toxicity original	
	-Developmental Toxicity (8/10)	M: Known developmental potential R: Positive Positive	O ART toxicity	p M: Known develop M: Known develop M: Known d
	Reproductive Toxicity (8/9)	M: Not known reproductive potential R: Positive	converted data	u M: Undefined repro M: Known reprodu M: Known r
	Teratogenicity (FDA TERIS)		8 from scale DART toxicity original	
	-⊞Genetic Toxicity			
	Immunotoxicity	2		
	-⊞Irritation / Corrosion	. 4	Selected [8/8] poin	
	Neurotoxicity			
	- Photoinduced Toxicity		OK X Cancel	
	H±Repeated Dose Toxicity			
	H±lSensitisation	•		
	Interview to Dependention			

1. Positive prediction obtained for endpoint "Developmental toxicity" reproduces the positive observed data. Further read-across analysis continues with next endpoint "Reproductive toxicity". Follow the steps:

- 2. **Select** the cell corresponding to "Reproductive toxicity" endpoint;
- Select "Read-across";
 Click "OK"
- 4. Click "Apply"

5. In our case less informative scale is used: "DART toxicity"

Read-across applied for reproductive tox Scenario 2: OFG is used for primary categorization

Investigated endpoint: Reproductive toxicity

1. The obtained read-across prediction could not reproduce the negative observed data of the target. It is not straightforward and not reliable due to variable endpoint data of the analogues. The purpose of the further workflow is to subcategorize and refine the initial category of analogues. Follow the steps illustrated on next slide.

Read-across applied for reproductive tox Scenario 2: OFG is used for primary categorization

Investigated endpoint: Reproductive toxicity

1. **Open** "Select filter data" 2. **Select** "Subcategorize" to eliminate the analogues with different DART toxicity

3. Select "DART scheme";

4. Click "Remove"

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Read-across applied for reproductive tox Scenario 2: OFG is used for primary categorization

Investigated endpoint: Reproductive toxicity

In this case the obtained read-across is not reliable and we do not recommend to accept the prediction. The reason for that obtained read-across is not reliable enough is that the category members do not show similar test results, but note that it is not replicating the experimental data. 1. **Click** "Return to matrix"

Recap

- In this step of the workflow two scenarios for identifying analogues are played:
 - Scenario 1: DART scheme applied as a primary categorization.
 - Scenario 2: DART scheme applied in subcategorization procedure.
- Read-across results of scenario 2 shows:
 - The obtained positive prediction for developmental toxicity reproduces the positive observed data.
 - The obtained read-across prediction for reproductive toxicity is not reliable and could not be accepted. The reason for that obtained read-across is not reliable enough is that the category members do not show similar test results, but not that it is not replicating the experimental data.
- The further workflow continues with applying of external DART SAR model.

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition
 - Overview
 - Scenario 1
 - Scenario 2

Support the prediction by DART model

DART SAR model

- DART SAR model is based on profiling results obtained by DART profiling scheme v 1.0. The profiling scheme is implemented following Wu S. paper [1]. The SAR model follows the same organization as DART profiling scheme with an exception of prediction result. It is used for identifying chemicals with structural features associated with the potential to act as reproductive or developmental toxicants.
- The prediction outcome from the SAR model provides more general information for potential of chemical to cause DART toxicity, while the DART profiling scheme provides specific information about the DART category associated with the specific chemical class.
- The outcome from the model is "Known precedent reproductive and developmental toxic potential", when the chemical meet the structural criteria of the model; "Not known precedent reproductive and developmental toxic potential", if the toxic potential of the input chemical is not known and "Not covered by current version of the decision tree" if the identified structural features are not object of the DART tree.
- Prediction outcome from DART model is provided for repro/developmental toxicity as joint effect, while read-across analysis is performed for each of the DART toxicity independently (previous exersice).
- The corresponding category is displayed in the report generated for the obtained prediction.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

^{1.} Wu S, Fisher J, Naciff J, Laufersweiler M, Lester C, Daston G, Blackburn K. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chem Res Toxicol. 2013 Dec 16;26(12):1840-61.
DART SAR model - overview

Current Chemical" 6. The software informs the user that the domain is not defined. **Click** "Yes" 7. Prediction obtained by DART model appears on datamatrix

DART SAR model - overview

The OECD QSAR Toolbox for Grouping Chemicals into Categories

DART SAR model – Explain results

The OECD QSAR Toolbox for Grouping Chemicals into Categories

DART SAR model – Explain results

DART scheme v.1.0 (Endpoint Specific) - Profiling Scheme Browser	-importantia rise terming risest	
Save Options Close		4
Properties Reference Target/Metabolites Metabolism Pa Caption	Node responsible for assigning the "Known precedent reproductive and devopmental" category to the target is selected	* Blue tick marked categories are required to be met in order "Known precedent reproductive and devopmental" to be assigned. With green ticks are marked results obtained for current target. As it can be seen the general category "Known precedent" is assigned to the target, because it has some of the required (blue ticks) categories.
G2Known precedent reproductive and developmental toxic potential Group Node library path (separated with _) YES Category Name Known precedent reproductive and developmental toxic potential NO Category Name Tag undefined Disable Disable Disable	Boundary Options Metabolism Explanation Label Condition No labels assigned Steroid derivatives ✓ Non-steroid nucleus derived estrogen receptor (ER) and androgen receptor (AR) >> 4-alkylive Non-steroid nucleus derived estrogen receptor (ER) and androgen receptor (AR) >> 4-alkylive Non-steroid nucleus derived estrogen receptor (ER) and androgen receptor (AR) >> Havon ✓ Non-steroid nucleus derived estrogen receptor (ER) and androgen receptor (AR) >> N-arylive Non-steroid nucleus derived estrogen receptor (ER) and androgen receptor (AR) >> N-arylive ✓ Non-steroid nucleus derived estrogen sceptor (ER) and androgen receptor (AR) >> N-arylive ✓ Non-steroid nucleus derived estrogen sceptor (ER) and androgen receptor (AR) >> N-arylive ✓ Steroid nucleus derived ER and AR binders ✓ Steroid nucleus derived ER and AR binders >> Androgens, anti-androgens (2a-4) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) ✓ Steroid nucleus derived ER and AR binders >> Estradiol-like compounds (2a-1) 	signed labels from list phenol-like derivatives (2b-3) e and mycoestrogen related derivatives (2b-1) substituted urea, carbamide and anide derived androgen receptor (AR) (2b-4) non-steroidal estrogen receptor (ED) binding compounds (20-2)

1. Click on "Query tree" panel 2. Scroll down and find category marked with green tick

3. Marked category "Non-stereoid nucleus derived estrogen receptor (ER)(2b-4)" is responsible for DART effect*. The category "Known precedent repro..... potential" obtained as a DART SAR results is due to this category and the other "Polyhalogenated benzene derivatives (8c)" category. More details for both schemes is provided on next slides 4. **Close** the window

DART SAR model – Explain results N-aryl subsituted urea(2b-4)

QSAR TOOLEOX

DART SAR model – Explain results N-aryl subsituted urea(2b-4)

DART SAR model – Explain results N-aryl subsituted urea(2b-4)

Profile Description						
Category 2: Estrogen receptor (ER) and androgen receptor (AR) binding compounds						
2b. Non-steroid nucleus derived estrogen receptor (ER) and androgen receptor (AR) Binders						
2b-4. N-aryl substituted urea, carbamide and amide derived androgen receptor (AR) binders.						
Most androgenic chemicals activate AR-me carbamides and amides, many are AR binde in Figure S9, appears to be important for Al the benzene ring, such as F, Cl, NO2, or Cl moieties (2b-4-2), exemplified by imidazoli carbon, and substituents (R, R ₁ , R ₂ and R ₃)	liated transcription in mammalian cells through receptor mediated mechanisms. For example, in the sub-category of N-aryl substituted ureas, s which display developmental toxicity potential. The general core structural requirement of Ph-N-CO-X in (2b-4-1) and (2b-4-2) as shown . binding. The substituents associated with activity are further enumerated below. SAR analysis indicates that electron-withdrawing groups on V favor AR binding. ^{1,2} In some cases, the substituents on X in (2b-4-1) could be fused with the NH to form five membered heterocyclic ring fine-2,4-dione, oxazolidine-2,4-dione, and pyrrolidine-2,5-dione derivatives. For these cyclic compounds, X can be nitrogen, oxygen or are listed in Figure S9 in structure (2b-4-2). These N-aryl substituted heterocyclic ring derivatives, such as vinclozolin (CAS# 50471-44-8).					
iprodione (CAS# 36734-19-7) and proyat androgen antagonist is prochloraz (CAS# 6' male rodents, and <i>in vitro</i> data show not on	vidone (CAS# 32809-16-8), have a range of developmental and reproductive effects linked to activity as an anti-androgen. ^{3, 4} Another 747-09-5), which appears to have a distinct pattern of toxicity. Prochloraz had been reported to have multiple effects on the development of y anti-androgen but also anti-estrogen effects as well as interaction with Ah receptors and inhibition of aromatase ^{5, 6} .					
Ar-	Ar-NUX.R					
Ar=Ph, alkyl (C1-C3)-Ph, alkyl-,CI-Ph, mono-, di-CI-Ph, CF ₃ ,NO ₂ -Ph X=C; R=alkyl; R ₁ =Me X=N; R=Me, OMe, CICH2; R ₁ =Me, iPr	Ar=di-CI-Ph X=0; R=R ₁ =none; R ₂ , R ₃ =alkyl, vinyl X=N; R=alkylNHCO; R ₁ =none; R ₂ , R ₃ =alkyl, H X=C; R,R ₁ ,R ₂ ,R ₃ can be alkyl or fused cyclo-alkyl					
2b-4-1	2b-4-2					
Fig. S9. The general structural features of N	aryl substituted ureas, carbamides and amides like chemicals.					
Original reference:						
Shengde, W., Joan, F., Jorge N., Michael L., Cathy L., George D., and Karen B., (2013) Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chem.Res.Toxicol. 26(12), 1840-1861.						

References cited in the original article:

1. Fang, H., Tong, W., Branham, W., Moland, C., Dial, S., Hong, H., Xie, Q., Perkins, R., Owens, W., Sheehan, D. (2003) Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor Chem Res Toxicol 16 1338-1358

DART SAR model – Explain results Polyhalogenated benzene derivatives (8c)

	FIC Find Ford	► Category Definition	01010 01010 10100 > Data Gap Filling →	Report				🕤 🕝 名 🔧 न <u>A</u> bout <u>U</u> pdate
Filing ∳ ∆pply							_	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Data Gap Filling Method	Filter endpoint tree	1 [target]		2	3	4	5	6 7
Read-across			,c+,		S. 10	*** Y***		au. au.
Trend analysis	Structure		*°− ⁶	0	Q	Z.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
◎ (Q)SAR models	Structure		Č~	° 💿		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	° @~
			°c1	` CI	dHa N-CHa	×۲.	-~. -~.	`cı
larget Endpoint								
Human Health Hazards Developmental Toxicity / Teratogenicity Developmental and Reproductive Toxicity (DART)								
				Profiling resu	lts		- • ×	
				Chamical and				1
	Human Health Hazards				eme v.1.0			
Relevant (Q)SAR models	-⊞Acute Toxicity			Know	n precedent reproductive and	developmental toxic poter	ntial	
<< CREATE A NEW QSAR >> Developmental and Reproductive Toxicity (DART)	Bioaccumulation	Bioaccumulation						
	Carcinogenicity Adyhalogenated bezzene derivatives (8c)							
	Developmental Toxicity / Teratogenicity			1				
	Developmental and Reproductive	(1/1) Q: Known precede	ent reproductive and develor	-				
	Developmental Toxicity (8	B/10) R: Positive, Positi	ve					IVI: Known develop IVI:
	-Reproductive Toxicity	(8/9) M: Not known rep R: Positive	roductive potential	M.				M: Known reprodu M:
	Teratogenicity (FDA TERIS)							
	-⊞Genetic Toxicity							
	Immunotoxicity							
	-⊞Irritation / Corrosion						•	
	Neurotoxicity							
	- Photoinduced Toxicity			? Det	ails	Close		
	Hepeated Dose Toxicity	AOP						J
(Q)SAR models in nodes below	- ESensitisation	· · · · · · · · · · · · · · · · · · ·		- 2				
	- IoxCast	4						
	The Toxicality to Reproduction	tion						
🗹 Only endpoint relevant 🛛 🛌	EProfile							
✓ Only chemical relevant ✓ Show estimated DB								

Select second category "Polyhalogenated benzene derivatives (8c)"
 Click "Details"

QSAR TOOLEOX

DART SAR model – Explain results Polyhalogenated benzene derivatives (8c)

DART SAR model – Explain results Polyhalogenated benzene derivatives (8c)

Category 8: Aromatic compounds with alkyl, multi-halogen and nitro groups

Chemicals within this category include the following five sub-categories: 8a. toluene and small alkyl toluene derivatives; 8b. NO2-alkyl/NO2-benzene derivatives; 8c. polyhalogenated benzene derivatives; 8d. polyhalogenated-, NO2/halogenated-oxydibenzene; 8e. dihalogen-, dinitro-phenol and their ester derivatives. The general core structures of these chemicals include the toluene, oxydibenzene and phenol ring with alkyl, halogen and/or nitro substituents as shown in (8a to 8e) in Figure S24.

8c. Polyhalogenated benzene derivatives

For sub-category 8a, toluene and a single alkyl chain substituent (< 5 carbon atoms) present on toluene are included. The alkyl substituents can be at ortho, para or meta-positions. For subcategory 8b, the majority of chemicals are mono-, di-, tri-nitrobenzene or nitrotoluene with ortho, para or meta relative substituent placement. Members of 8a and 8b without nitro substituents appear to be primarily developmental toxicants, while addition of a nitro group may be associated with a distinctive pattern of male reproductive toxicity. Sub-category 8c includes multi-chlorinated benzene derivatives containing from 2 to 6 chlorine atoms. Other possible substituents include methyl or nitrile groups. The members of this class included here are primarily developmental toxicants (Appendix 1). Sub-category 8d includes multi-substituents usubstituent oxydibenzene with halogen or halogen/nitro substituents. Because these chemicals normally do not readily form co-planar structures, they are not anticipated to bind to the AhR, (see section 3b-2), nor do they have a mode of action dependent on the AhR interaction.²⁹

 $R=R_1=R_2=CI$ (# of Cls from 1 to 6)

8c

Fig. S24. The structural scope of alkyl substituted benzene, alkyl/NO2-substituted benzene, polyhalogenated benzene, oxydibenzene, poly-halogenated, poly-NO2phenol and their esters

Original reference:

Shengde, W., Joan, F., Jorge N., Michael L., Cathy L., George D., and Karen B., (2013) Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chem.Res.Toxicol. 26(12), 1840-1861.

References cited in the original article:

1. ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Toxicological profile for polybrominated biphenyls and polybrominated diphenyl ethers.

Interpretation of SAR results

- Obtained SAR results show, that target chemical may elicit developmental and reproductive toxic potential based on belonging to the two DART toxic categories:
 - N-aryl subsituted urea(2b-4)
 - Polyhalogenated benzene derivatives (8c)
- Both DART toxic categories are characterized with mechanistic interpretation and training set chemicals with observed DART data.

Summary

- Toolbox 3.3 includes two application of DART scheme as discussed by Wu S paper:
 - DART scheme that can be used as a profiler for category formation or
 - DART SAR model for obtaining results based on DART profiling scheme and DART training set database.

QSAR TOOLEOX

Outlook

- Background
- Objectives
- The exercise

• Workflow

- Input
- Profiling
- Endpoint
- Category definition
- Support the prediction by DART model

Save predictions

Saving the prediction result

- This functionality allows storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc., on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots.

Saving the prediction result

Go to "Input" section; 2.Click on "Save" button; 3. Browse and put name of the file;
 Click "Save" button

Open saved file

Open saved file

The OECD QSAR Toolbox for Grouping Chemicals into Categories