QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Step by step example how to predict acute aquatic toxicity to Daphnia for the 3-ethyl-5-methyl-3-methoxyphenol by the trend analysis approach

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Background

 This is a step-by-step presentation designed to take the user of the Toolbox through the workflow of a data filling exercise by the trend analysis approach.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Objectives

- This presentation reviews a number of functionalities of the Toolbox:
 - Identify analogues for a target chemical
 - Retrieve experimental results available for those analogues
 - Fill data gaps by trend-analysis

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Specific Aims

- To review the workflow of the Toolbox.
- To review the six modules of the Toolbox.
- To reacquaint the user with the basic functionalities within each module.
- To explain to the user the rationale behind each step of the exercise.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Trend Analysis Overview

- For a given (eco)toxicological endpoint, the members of a category are often related by a trend (e.g. increasing, decreasing or constant). The trend could be related to molecular mass, carbon chain length, or to some other physicochemical property.
- A demonstration of consistent trends in the behaviour of a group of chemicals is one of the desirable attributes of a chemical category and one of the indicators that a common mechanism for all chemicals is involved. When some chemicals in a category have measured values and a consistent trend is observed, missing values can be estimated by simple scaling from the measured values to unmeasured values as a means of filling data gaps.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Exercise

- In this exercise we will predict the acute toxicity to daphnids for an untested compound, (3-ethyl-5-methyl-4methoxyphenol), which is the "target" chemical.
- This prediction will be accomplished by collecting a set of test data for chemicals considered to be in the same category as the target molecule.
- The category will be defined using the following categorization schemes:
 - Acute aquatic toxicity classification by ECOSAR for structural grouping.
 - Acute aquatic toxicity MOA by OASIS for mechanistic grouping.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 Chemical Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases
- Chemical IDs such as EC number, Einecs number

B.Group of chemicals

- User List/Inventory
- Specialized Databases

Getting Started

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX".
- Click on "Input" (see next screen shot).

Chemical Input Screen Input screen

QSAR TOOLBOX	(†) Finput	► Profiling	Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Peport	🌀 🕙 😣 🔧 🗒 <u>A</u> bout <u>U</u> pdate
Document Document Image: Constraint of the second secon	# TT <u>C</u> AS# <u>N</u> ame	Single Chemical	te <u>Q</u> uery C <u>h</u>	O 1 temIDs DB I	Chemical List		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
DocumentsDocumentDocumentDocumentDocumentDocumentDocumentDocumentDocument	Filter endpoint tre Structure Bhysical Environm Ecotoxico EHuman H	e Identity Chemical Properties ental Fate and Transport ological Information ealth Hazards					
0 Document							1/0/0

15.07.2016

Chemical Input by Drawing

- Inputting the target chemical by drawing varies in difficulty with the structural complexity of the molecule.
- It is accomplished by a series of point-clickmove-click operations within the 2D-editor which drops down when you click on "structure" (see next screen shot).
- The subsequent series of screen shots will take you through the process for the target chemical.

Chemical Input Screen Input target chemical by drawing

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

	тн 🗛 🗾	iingle 🔻 👯 🚺		⊚ ≢ (H) (H)
SMILES/InChi c1ccccc1				Draw 🙂 🛛 Mixture
N/A				▼ <u>E</u> dit name
		A		
-6-	 ><=:			
;e∓é	Jç−ç.			
			2	
, se − e. , se _ e.	; <u>=</u> =€ ~=≈ ₌ ~≈-			
	·		СН	
7.	2 ^d .		снсн	
, A				
, -, -, -, -, -, -, -, -, -, -, -, -, -,	~ <u>e</u> —e.			
,ĕ.	`c	-		oasis-Imc.o
drag the mouse with left b	utton pressed to cre	ate bond		
	6	🗸 ок	🔀 Cancel	

- 1. Left Click on the appropriate template form from "templates".
- 2. Move the curser to the large clear area and **left click** again, this puts the selected template on the plot.

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

3. Click on ∠ button to add a bond of selected type ("Single" in this case).

4. Drag the mouse (pointing finger) to the appropriate atom and **left click** to create a single bond.

Chemical Input by Drawing

- Note the default is addition of a CH₃-group.
- By moving the 'finger' to other C-atoms and left clicking the mouse adds other hydrocarbon fragments.
- If you make an incorrect entry you can click on the 'undo' icon in the upper corner of the screen to remove the addition.
- This process allows you to build the hydrocarbon skeleton of the target molecule (see next screen shot).

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

2. Left click with mouse over the methyl group to insert an oxygen atom.

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

Chemical Input Target chemical identity

- The already drawn target structure automatically appears on the data matrix
- Note that no CAS number or name is displayed for this chemical. This means the target chemical is not listed in the chemical inventories/databases implemented in the Toolbox (see next slide).

Chemical Input Target chemical identity

The workflow on the first module is now complete, and the user can proceed to the next module. Click on "Profiling".

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling

Summary information of the different profilers are provided in the "About".

Profiling

 For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, DNA binding by OASIS v1.4) and clicking on "View" (see next screenshot).

Profiling

- 2. Click View
- 3. Click on one of the Structural alerts (for example Alkylnitriles)

Profiling Side-Bar to Profiling

- The outcome of the profiling determines the most appropriate way to search for analogues (detailed information in Manual for getting started – Toolbox 2.0 (Chapter 4). <u>http://www.oecd.org/dataoecd/58/56/46210452.pdf</u>
- Table 4-1 in chapter 4 (Manual for getting started Toolbox 2.0) lists a selection of profilers and their relevance for different endpoints of regulatory relevance.
- For this example, the following mechanistic profiling methods are relevant to the aquatic toxicity:
 - ECOSAR for structural grouping
 - Acute aquatic toxicity MOA by OASIS mechanistic grouping
 - Protein binding by OASIS v.1.4– mechanistic grouping
 - Acute aquatic toxicity classification by Verhaar (Modified) grouping by reactivity
 - Organic functional groups empiric knowledge

Profiling Profiling the target chemical

- Select the "Profiling methods" related to the target endpoint by ticking the box next to the profilers name.
- This selects (a green check mark appears) or deselects(the green check disappears) profilers.
- For this example, select the following profilers which are relevant to the aquatic toxicity (see next screen shot):
 - ECOSAR for structural grouping
 - Acute aquatic toxicity MOA by OASIS mechanistic grouping
 - Protein binding by OASIS v.1.4 mechanistic grouping
 - Acute aquatic toxicity classification by Verhaar(Modified) grouping by reactivity
 - Organic functional groups empiric knowledge

Profiling Profiling the target chemical

Profiling Profiling the target chemical

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target chemical.
- Please note the specific profiling results by Classification by ECOSAR and MOA by OASIS (see next slide).
- These results will be used to search for suitable analogues in the next steps of the exercise.

Profiling

Profiles of the target "3-ethyl-5-methyl-4methoxyphenol

QSAR Toolbox 3.4.0.17 [Document_4]

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Endpoint

Endpoint

- "Endpoint" refer to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox database.
- Data gathering can be executed in a global fashion (i.e., collecting all data of all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).
- In this example, we limit our data gathering to the common aquatic toxicity endpoints from databases containing aquatic toxicity data (Aquatic ECETOC, Aquatic Japan MoE, ECOTOX, and Aquatic OASIS).

Endpoint

QSAR TOOLEOX	(+) ► Input ►	rofiling	Endpoint	Category Definition → Data C			
Dat Import Gather J International Internati	Export Export IUCLID5	Delete Delete Database In	e Tau	tomerize			
Databases Select Al Unselect All Invert About Physical Chemical Properties Environmental Fate and Transport ✓ Aquatic EVETOC ✓ Aquatic EVETOC ✓ Aquatic Sterror	Filter endpoint tree Structure			1 [target]			
Aquatic Obras ECHA CHEN COTOX							
	Acute aquat Acute aquat Aquatic toxi Empiric Organic Fur	Acute aquatic toxicity classification by Verhaar (M Acute aquatic toxicity MOA by OASIS Aquatic toxicity classification by ECOSAR Empiric Organic Functional groups					

 Expand the Ecotoxicological Information section;
 Select databases related to the target endpoint by adding a green check in the box before the database name; 3. Click Gather

Endpoint Process of collecting data

Toxicity information on the target chemical is electronically collected from the selected datasets.

A window with "Read data?" appears. Now the user could choose to collect "all" or "endpoint specific" data.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Endpoint Process of collecting data

In this example, an insert window appears stating that no experimental data is available for the chemical of interest

QSAR	. TOO	LBOX	► In	F put	Profiling	Endpoi	nt ▶ Cat	egory Definiti	on ⊧D	01010 01 1 10100 Pata Gap Filling			
Data		Import		Export		Delete	Tautomeriz	e					
1	-		8		Ő	Ő	æ						
<u>G</u> ather	<u>I</u> mport	IUCLID5	Export	<u>I</u> UCLID5	<u>D</u> atabase		<u>D</u> atabase						
	Databas	es	Filter	r endpoint tree									
Select All Ur	nselect All	Invert Abou	it										
> Physica	al Chemical	Properties											
Enviror Ecotoxi	nmental Fat icological Tr	e and Transport formation											
- 🗹 Aqu	atic ECETOC												
Aqu													
ECH													
ECO)TOX 1 Health Haz	ards											
					Info	ormation				×			
						There are no e chemicals of in	kperimental d nterest.	ata available fo	or the				
										_	\frown		
									OK				
											\square		
									-	Cliele		+0	
									Τ.	CIICK	UK	ιO	ciose
										the w	indo	\ <i>\\</i> /	
											muu	vv	

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Endpoint
- Category definition

Recap

- You have entered the target chemical being sure of the correct structure.
- You have profiled the target chemical and found no experimental data is currently available for this structure.
- In other words, you have identified a data gap, which you would like to fill.
- Now you are ready to continue with next step of the workflow "Category Definition".

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in defining the category definition.

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by trend-analysis.
- Detailed information about grouping chemical (Chapter 4) could be downloaded from:

http://www.oecd.org/dataoecd/58/56/46210452.pdf

• For this example, starting from the target chemical a specific EcoSAR classification is identified, subsequently analogues are found within the same specific classification for which experimental results are available.

Category Definition ECOSAR categories

- ECOSAR has been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data.
- "Aquatic toxicity classification by ECOSAR" in the Toolbox is used for grouping of chemicals by structural similarity which may or may not have mechanistic meaning. Experience has shown ECOSAR to be a robust profiler which makes it a logical choice in an initial profiling scheme.

Category Definition Defining ECOSAR category

Highlight "Aquatic toxicity classification by ECOSAR"; Click Define; 3. Confirm the category Phenols and 4. Click OK

Category Definition Defining ECOSAR category

QSAR TOOLEOX		Frofiling	€Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report
Categori	ze	-	Delete			
Define Define with metabolism Subcate	egorize <u>C</u> ombine	Clustering	<u>D</u> elete D <u>e</u> lete All			<u></u>
Grouping methods Hydrolysis half-life (Ka, pH 8)(Hydrowin) Hydrolysis half-life (Kb, pH 7)(Hydrowin) Hydrolysis half-life (Kb, pH 8)(Hydrowin) Hydrolysis half-life (Kb, pH 8)(Hydrowin) Hydrolysis half-life (CH 6.5-7.4) Ionization at pH = 1 Ionization at pH = 1 Ionization at pH = 9 Protein binding by OASIS v1.4 Protein binding by OASIS v1.4 Protein binding by OECD Protein binding potency Superfragments Toxic hazard classification by Cramer (ext	tension)	 Filter end Str Str Str Str En En En En En Hu 	point tree ucture bstance Identity ysical Chemical Propertie vironmental Fate and Trai otoxicological Information man Health Hazards	es Isport	1 [target]	
 Toxic hazard classification by Cramer (orig Ultimate biodeg Endpoint Specific Acute aquatic toxicity classification by Ver Acute aquatic toxicity dassification by ECOSAR Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox DART scheme v. 1.0 DNA alerts for CA and MNT by OASIS v. 1.4 DNA alerts for CA and MNT by OASIS v. 1.4 DNA alerts for/Carosion Inclusion rules by Eye irritation/corrosion Inclusion rules by in vitro mutagenicity (Ames test) alerts by 	jinal) thaar (Modified) k) alerts by ISS .1 BfR BfR 1SS		file General Mechanistic – DNA binding by OASIS Endpoint Specific – A Define category name – A Category name (562 ch – A Em – Organic Functional grou	v.1.4 emicals) <u>henols (Aquatic to:</u> Ips	No alert found xicity dassification by ECOSAR OK Cancel Aryl Ether Phen 1	× .

1. Click **OK** to confirm the name of the category and to gather experimental data

Category Definition Analogues

- The Toolbox now identifies all chemicals corresponding to the ECOSAR classification of "phenols" which are listed in the databases selected under "Endpoint".
- 562 analogues are identified. Along with the target they form a category (Phenols) which can be used for data gap filling.
- The name of the category appears in the "Defined Categories" window, along with the number of substances belonging to the category.

Category Definition Read data for Analogues

- The Toolbox automatically request the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

- In this example, since only databases that contain information for ecotoxicological endpoints are selected, both options give the same results.
- As the Toolbox must search the database, this may take some time.

Category Definition Read data for Analogues

Due to overlap between the Toolbox databases for intersecting chemicals the same data may be found simultaneously. Data redundancies are identified and the user has the opportunity to select either a single data value or all data values.

nts						\sim
	Endpoint	CAS	Structure	Value	additional_comme 🔺	Select
	LOEC	59-02-9		100 milligrams per kilogram	CONC 1/ONLY CONC TESTED//	Inve
$\mathbf{\nabla}$	LOEC	59-02-9	***Z***	100 milligrams per kilogram	CONC 1/ONLY CONC TESTED//	Charl
	LOEC	59-02-9	***	100 milligrams per kilogram	CONC 1/ONLY CONC TESTED//	Uneter
	LOEC	59-02-9	, S	100 milligrams per kilogram	CONC1/ONLY CONC TESTED//	Unched
	LOEC	59-02-9	*,c	100 milligrams per kilogram	CONC1/ONLY CONC TESTED//	
	LOEC	59-02-9		100 milligrams per kilogram	CONC1/ONLY CONC TESTED//	1
	1050			100 M		─ ∕/X C

Click Select one and then Click OK

Category Definition Summary of Analogues

•	rin Lij Profiling	•	Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report					
Cļuste	ring	X Delete	Delete X D <u>e</u> lete All								
Filte	r endpoint tre	2e			1 [target]	2	3	4	5	6	7
I	Structure				Сн3 0-Сн3 Сн		H ₂ N-CH				
	∃Substanc	e Identity									
	⊞Physical (Chemical	Properties								
	Environm	ental Eate	and Transport								
	=Ecotoxico	ological Inf	ormation								
ш	-⊞Aquatic	c Toxicity		(525/28510)		M: 100 mg/kg, 100	M: 102 mg/L, 238	M: 3.21 mg/L, 102	M: 0.868 mg/L	M: 2.05 mg/L, 0.00	M: 3.97 mg/L, 0.01
	Sedime	ent Toxicity	/	(402)(4450)		M: 2 15E2 mg/l		M: 4 kilograma por		M- 925/659-1 09E3	
Ш.	THuman H	nai ioxicity	/ arde	(163/4152)		WI. Z. IDED MIG/L		wi. 4 Kilograffis per		WI. 020(000, 1.00E5	
	EProfile	eaim naza	nus								
1111											

Category Definition Summary information of Analogues

3 97 mg/L 0 01
5.57 mg/L, 0.01
3.9

Chemical statistics presenting the number of chemicals and the available experimental data. This is statistics for the current row on data matrix.

Category Definition Experimental data

1. Double-click on the **cell** with measured data provides a dropdown box ("Data points") which provides detailed information.

Recap

- You have identified a category ("phenols") with the "Aquatic toxicity classification by ECOSAR" profiler for the target chemical 3-ethyl-5-methyl-4-methoxyphenol.
- The available experimental results for these 562 analogues have been collected from the selected databases (Aquatic ECETOC, Aquatic Japan MoE, ECOTOX, and Aquatic OASIS).
- But before the user can proceed with the "Filling Data Gap" module, he/she should navigate through the endpoint tree and find the specific gap that will be filled.

Category Definition Navigation through the endpoint tree

- The user can navigate through the data tree by opening (or closing) the nodes of the tree.
- The data tree is extensive but logically constructed; it can be mastered with a practice.
- In this example, the "48 h LC50 Mortality for *Daphnia magna*" is the target endpoint.
- You can navigate through the endpoint tree by typing the species "Daphnia magna" in the "Filter endpoint tree..." box and clicking (Aquatic Toxicity, Mortality, LC50, 48 h, Animalia, etc to Daphnia magna- the specific endpoint (see next two screen shots)

Category Definition Navigation through the endpoint tree

Grouping methods	Filter endpoint tree	1 [target] 2	3 4
DNA binding by OECD DFRA Cysteine peptide depletion DFRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 7)(Hydrowin) Hydrolysis half-life (Ka, pH 8)(Hydrowin)	Structure	сн _а с-сн, Ср-сн, он	н,н———————————————————————————————————
Hydrolysis half-life (Kb, pH 7)(Hydrowin) Hydrolysis half-life (Kb, pH 8)(Hydrowin) Hydrolysis half-life (pH 6.5-7.4) Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4			
Ionization at pH = 9 Protein binding by OASIS v1.4 Protein binding by OECD Protein binding potency	HAquatic loxicity HAccumulation (7/115) HAvoidance (8/25) HEBehavior (91/559)		M: 3.31 mg/l
Supertragments Toxic hazard classification by Cramer (extension) Toxic hazard classification by Cramer (original) Ultimate biodeg	(21/333) -⊞Biochemistry (73/1598) -⊞Cell(s) (27/258)	M: 100 mg/kg, 100	M: 10 mg/L, 2: M: 20 mg/L M: 2551 mg/L
Endpoint Specific Acute aquatic toxicity classification by Verhaar (Modified Acute aquatic toxicity MOA by OASIS Acute it toxicity classification by ECOSAR	H⊞Development (52/749) H⊞Ecosystem Process (3/34) H⊞Enzyme(s) (45/666)		M: 0.551 mg/L
Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Biodegradation fragments (BioWIN MITI)		M: 100 milligrams	M: 238 mg/L M: 102 mg/L,:
Carcinogenicity (genotox and nongenotox) alerts by ISS DART scheme v.1.0 DNA alerts for AMES by OASIS v.1.4 DNA alerts for CA and MNT by OASIS v.1.1			M: 0.2 mg/L, 3
Eye irritation/corrosion Exclusion rules by BfR			M: 2.7 mg/L, 2
 Document, 1 [562] Phenols (Aquatic toxicity classification by ECOSAR) [562] Phenols (Aquatic toxicity classification by ECOSAR) 1 	Horphology (32/900) GMortality DEC0 (2/85)		

 Expand the following nodes: Aquatic toxicity; Mortality; LC50; Animalia; Arthropodata (Invertebrates); Branchiopoda (branchiopodos)
 The OECP 2 AR Find Daphia magna - this is the species related to target endpoint

Category Definition

Navigation through the endpoint tree

1. Expand the following nodes: Aquatic toxicity; **Mortality**; LC50; 48h; Animalia; Arthropodata (Invertebrates); Branchiopoda (branchiopodos)

2. Find *Daphia magna* - this is the species related to target endpoint

Category Definition Navigation through the endpoint tree

TOOLBOX	(+) Input	► Profiling	► Endpoint	Category Definition) Data Gap Filling	► Report		
Categorize			Delete					
isia 🔏 🔏 Ifine with metabolism Subcategorize	es <u>C</u> ombine	📸 Clustering	XXX Delete Delete All					
Grouping methods ding by OECD ysteine peptide depletion rsine peptide depletion in Receptor Binding sis half-life (Ka, pH 7)(Hydrowin) sis half-life (Kb, pH 8)(Hydrowin) sis half-life (Kb, pH 8)(Hydrowin) sis half-life (Kb, pH 8)(Hydrowin) sis half-life (Kb, pH 8)(Hydrowin) n at pH = 1 on at pH = 4 on at pH = 7.4 on at pH = 9 binding by OASIS v1.4 binding by OECD binding potency agments szard classification by Cramer (extension szard classification by Cramer (original) + biodeg	,	Filter endpoint tree	malia xnnelida (Invertebrates) xthropoda (Crustacea, In BArachnida (Spiders) 3Branchiopoda (Branchio Atternia pattbenegene	(3/3) (3/3) (1/1) (1/1) (8/39) (1/1) (1/19)	arget) 2 Сн. о-сн. он		3 H.H.	4 K M: 5.8
pecific quatic toxicity classification by Verhaar (quatic toxicity MOA by OASIS toxicity classification by ECOSAR mulation - metabolism half-lives adation fragments (BioWIN MITI) genicity (genotox and nongenotox) aler/ theme v.1.0 rts for AMES by OASIS v.1.4 rts for CA and MNT by OASIS v.1.1 ation/corrosion Exclusion rules by BfR Defined Categories	Modified, s by ISS	2	 Arternia salina Arternia sp. Bosmina coregoni Ceriodaphnia dubia Ceriodaphnia pulchell Ceriodaphnia reticulat Chydorus sphaericus Daphnia carinata Daphnia cucullata Daphnia galeata ssp. Daphnia longispina Daphnia magna Daphnia pulex 	(7/9) (2/10) (11/1) (10/37) a (1/1) a (2/5) (1/1) (2/2) (3/4) mendotae (1/1) (1/1) (54/215) (10/51)		1. E	xpand the Aquatic to LC50; 4 Arthropoda (Invertebra da (branci ind Daphia the species endpoint	following nodes: exicity; Mortality; 8h; Animalia; ta tes);Branchiopo niopodos) a magna - this is related to target

Category Definition

Navigation through the endpoint tree

Navigation throw the tree by "Filtering"

Recap

- You have now retrieved the available experimental data on aquatic toxicity for 562 chemicals classified as "phenols" by the "Aquatic toxicity classification by ECOSAR" profiler found in the databases Aquatic ECETOC, Aquatic Japan MoE, ECOTOX, and Aquatic OASIS.
- You have identified the target endpoint of "48 h LC50 Mortality for *Daphnia magna*".
- You are ready to fill in the data gap so click on "Data Gap Filling" (see next screen shot).

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling

Data Gap Filling

Overview

- "Data Gap Filling" module gives access to three different data gap filling tools:
 - Read-across
 - Trend analysis
 - (Q)SAR models
- Depending on the situation, the most relevant data gap mechanism should be chosen, taking into account the following considerations:
 - Read-across is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal).
 Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
 - Trend analysis is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 - "(Q)SAR models" can be used to fill a data gap if no adequate analogues are found for a target chemical.
- In this example, we use trend analysis.

Data Gap Filling Data Gap window

QSAR TOOLBOX	(+) ► Input			► Endpoint	Category Definit	01010 01 1 10100 ion ▶ Data Gap Filling	P Report	
Filling § Apply								
Data Gap Filling Method		daphnia m	agna			1 [target]	2	3
 Read-across Trend analysis (Q)SAR models 		Str	ucture			СН, 0-СН, 0 Н		н, н —Қ
Target Endpoint Ecotoxicological Information Aquatic Toxicity Mortal	ity LC50 48 h		-±LC0		(1/1)			
				ned Duration nalia thropoda (Crustacea, Branchiopoda (Branc	(2/2) (1/4) (37/115) (1/2) Invertebrates) hiopods, Crustac			
			-⊞50 h -⊞72 h	— Daphnia magna	(54/215) (1/2) (2/7)			
			-⊞96 h		(9/19)			
			-⊞4.2 Day	ys	(1/1)			
			-⊞7 Days		(7/9)			
			H I Pavs		(1/1)			

Data Gap Filling Apply Trend analysis

QSAR TOOLBOX) Input	Find the second	€ Endpoint	Category Definiti	on Data Gap Filling	► Report	
Apply 3	_						
Data Ga 🧿 thod		laphnia magna			1 [target]	2	3
• Real-across					ÇH,	3	
O Trend analysis		Structure			(о-сн.		N.N
• (Q)SAR models		Structure			он Сн	A.	(0
Farget Endpoint		-ELCO		(1/1)			
Animalia Arthropoda Branchiopoda Dashnia magna	IICY LCSU 48 N						
		- Undefined I	Duration	(2/2)			
		+⊞3 h		(1/4)			
		±-24 n		(377115)			
		H=148 h		(1/2)			
		T _P Animalia					
			ooda (Crustacea,	Inverte			
		⊟Brar	ichiopoda (Branch	iopods rustac			
			aphnia magna	(54/215)			
		<u>+</u> ±50 h		(1/2)			
				(277) (9/19)			
		±30 m		(1/1)			
		-⊞7 Days		(7/9)			
1 Highlight th	ne dat	a endroi	nt bo	x corres	nondina	to Dank	nnia
		lor the taxe			ill be ome		mu
illayila/LC50/	4011 UNC		let chen	iical. It w	in be emp	cy;	
2. Select Trend	d analys	sis; 3. Cli	ck Appl y	У			

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Results of Trend analysis

Data Gap Filling

Interpreting Trend analysis

- The resulting plot outlines the log of the experimental LC50 results of all analogues (Y axis) according to a descriptor (X axis) with Log *Kow* being the default descriptor (see next slide).
- The **RED** dot represents the predicted value for the target chemical.
- The **BLUE** dots represent the experimental results available for the analogues used in the trend analysis.
- Before accepting the estimated result for the target chemical, the trend analysis should be further refined by subcategorisation (see following slides).

Data Gap Filling Side-Bar of Subcategorisation

- Remember in the Toolbox, a category refers to a group of chemicals which have the same profiling result according to one of the profilers listed in the module "Profiling".
- Subcategorisation refers to the process of applying additional profilers to the previously defined category; subcaregorisation identifies chemicals which have differing profiling results and eventually eliminating these chemicals from the final category.

Data Gap Filling Side-Bar of Subcategorisation

In this example, subcategorisation allows for the elimination of analogues which are dissimilar to the target chemical with respect to:

- <u>Substance type (mixtures and hydrolizing chemicals)</u>

The categorisation based on substance type allows keeping among the analogues only those that are of the same chemical type: discrete chemicals, mixtures, polymers, inorganics, organometalics. The current target is a discrete chemical hence the analogues should also be discrete chemicals.

- OASIS Mode of action (all except phenols and anilines)

The categorization based on mode of action identifies analogues having the same mode of action as the target which is in the group of phenols and anilines.

- <u>Chemical elements</u>

The profiler aimed to identify analogues consisting of same elements as those presented in the target chemical

Subcategorisation is demonstrated in the next 4 screen shots.

Data Gap Filling

Side-Bar of Subcategorisation

15.07.2016
Data Gap Filling

- 1. **Double click** above the outlier to see why this chemical is different to the target The chemical is dissociating chemical and has to be eliminated being different substance type compared to the target, which is a discrete chemical.
- 2. Close; 3. Click **Remove** to eliminate dissimilar chemical

Data Gap Filling

Subcategorisation by Acute-aquatic toxicity MOA

1. Select Acute aquatic toxicity MOA by OASIS; 2. Click Remove to eliminate dissimilar chemical

The OECD QSAR Toolbox for Grouping Chemicals into Categories

3

Data Gap Filling

Subcategorisation by Chemical elements

Right click over the outlier; 2. Select information and select Different to target;
 Select Chemical elements; 4. Click Remove to eliminate dissimilar

Data Gap Filling Results

Data Gap Filling Results

- The remaining chemicals in the graph now all have a consistent profile relevant for aquatic toxicity (i.e. substance type, Classification by ECOSAR, MOA by OASIS and Chemical elements).
- By accepting the prediction the data gap is filled (see next screen shot).
- By clicking on Return to Matrix, the user can close the read-across and proceed with the workflow (see next screen shot).

Data Gap Filling

Accepting prediction results

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling
- Export a prediction to IUCLID5

Export prediction to the IUCLID5 Overview

- The OECD QSAR Toolbox allows the users to export predicted data (by means of the Filling Data Gap tools) to IUCLID 5.
- There are two ways of exporting:
 - create an *.i5z file which can then be imported into an IUCLID 5 database.
 - connect to an IUCLID 5 server (via WebServices) and assigning the predicted endpoint data to a selected substance.
- A wizard will guide the user through the different steps of exporting (see next screen shot).
- More detailed information could be found in the following link: <u>http://www.oecd.org/dataoecd/54/27/47136326.pdf</u>

Exporting the prediction to IUCLID5

Case study

QSAR TOOLBOX	(†) ▶ Input	•	Profiling	Endpoint	► Category Definitio	01010 01 1 10100 n → Data Gap Filling		► Report	
Filing \$ Apply									
Data Gap Filling Method		daphnia	magna			1 [target]	2		3
 Read-across Trend analysis (Q)SAR models 		St	ructure			СН, 0-СН, 0Н		And the second	H.H.
Ecotoxicological Information Aquatic Toxicity Mortali Animalia Arthropoda Branchiopoda Daphnia magna	ity LC50 48 h		-⊞Undef -⊞3 h -⊞24 h -⊞25 h	ined Duration	(2/2) (1/4) (37/115) (1/2)				
			Leanin Leanin Leanin Leanin Leanin Leanin	malia Inthropoda (Crustace Branchiopoda (Brar	a, Invertebrates) nchiopods, Crusta		1		
		_	1 5750 1	— Daphnia magna	(55/216)	1. 3.47(0.726,16.6).		Сору	
		-			(1/2)			Explain	
					(277) (9/10)			Delete prediction	
				avs	(3/13)			Display prediction do	main
			-⊞7 Day	s	(7/9)			Explain prediction	
			-⊞9 Daγ	s	(1/1)			- aprent prediction	
			-⊞11 Da	ys	(1/1)			Edit prediction info	
			-⊞13 Da	ys	(1/1)			Report	4
			-⊞14 Da	ys	(3/4)		•	IUCLID5	
			 -⊞20 Da	γs	(1/1)	L	-		

1. Move the mouse in the column of the target substance and click the **right** mouse button; 2. Select **IUCLUD**

Export to IUCLID 5.5 🗆 🗙
Ise the checklist box to select predictions to export. To make last moment modifications to rep ort data use the "Edit report information" button.
Predictions list Image: State
<pre>< Back Next > Finish Cancel</pre>

Select the **prediction** to export; Click **Next** to move to the next step of the export.

The user could also edit the report information

3. Select **prediction**; 4. Select **template** to export the prediction

Stage 2 or 5
Prepare export fields for each prediction. 1st: select prediction. 2nd: select template to export that prediction to. 3rd: review/edit the IUCLID5 fields.
Predictions list
23.06.2016 10:47 [T]: 3.47(0.726;16.6) mg/L; Estimation for LC50; Domain: In domain; Endpoint path: Ecotoxicological Information;
< >>
Harmonized template selection
OECD Template #43: Short-term toxicity to aquatic invertebrates
Review export data 6 < Back

5. Review/edit the IUCLID5 fields 6. Click Next

7. Select **medium** to export, i5z file or export via WebServices; 8. Specify the export file; 9. Click **Finish**; 10. Click **OK**

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling
- Export a prediction to IUCLID5
- Report

Report Overview

- Report module could generate report on any of predictions performed with the Toolbox.
- Report module contains predefined report templates as well as a template editor with which users can define their own user defined templates.
- The report can then be printed or saved in different formats.

Report Generation report

1. Go to **Report** section; 2. **Select** prediction for the target chemical from the "Available data to report" window; 3. **Click** Create

Report Overview

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc., on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

1

Open saved file

Congratulations

- You have now been introduced to the work flow of the Toolbox and completed the tutorial on data gap filling by trend analysis and exported the prediction to IUCLID 5
- You have been introduced to the six modules of the Toolbox, the basic functionalities within each module and the rationale behind each module.
- Remember proficiency comes with practice.