QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Step-by-step example of how to predict Ames mutagenicity for a chemical by a qualitative read-across approach

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox in a data-gap filling exercise using read-across based on molecular similarity with data pruning.
- If you are a novice user of the Toolbox you may wish to review the "Getting Started" document available at [www.oecd.org/env/existingchemicals/qsar] as well as go through tutorials 1 and 2.

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Objectives

- This presentation demonstrates a number of functionalities of the Toolbox:
 - Entering a target chemical by SMILES notation and Profiling
 - Identifying analogues for a target chemical by molecular similarity
 - Retrieving experimental results available for those analogues, and for multiple endpoints
 - Filling data gaps by read-across

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Specific Aims

- To review the workflow of the Toolbox.
- To reacquaint the user with the six modules of the Toolbox.
- To reacquaint the user with the basic functionalities within each module.
- To introduce the user to new functionalities of selected modules.
- To explain to the rationale behind each step of the exercise.

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Read-across & the Analogue Approach

- Remember, read-across is a method that can be used to estimate missing data from a single or limited number of chemicals using the analogue approach.
- In the analogue approach, experimental endpoint information for a single or small number of tested chemicals is used to predict the same endpoint for an untested chemical that is considered to be "similar" (i.e., within the same category).

Analogous Chemicals

- Previously you learned that analogous sets of chemicals are often selected based on the hypothesis that the toxicological effects of each member of the set will show a common behaviour.
- For this reason mechanistic profilers and grouping methods have been shown to be of great value in using the Toolbox.
- However, there are cases where the mechanistic profilers and grouping methods are inadequate and one is forced to rely on molecular similarity to form a category.
- The Toolbox allows one to develop a category by using either a mechanistic category like DNA binding or structural similarity.
- Since there is no preferred way of identifying structural similarity, the user is guided to use DNA binding as a first option.

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Exercise

- In this exercise we will predict the Ames mutagenicity potential for an untested compound, (n-hexanal) [SMILES CCCCC=0)], which is the "target" chemical.
- This prediction will be accomplished by collecting a small set of test data for chemicals considered to be in the same category as the target molecule.
- The category will be defined by empirical similarity, with respect to "Organic functional groups" profiler.
- The prediction itself will be made by "read-across" analysis.

Side-Bar On Mutagenesis

- Mutagens do not create mutations.
- Mutagens create DNA damage.
- Mutations are changes in nucleotide sequence.
- Mutagenesis is a cellular process requiring enzymes and/or DNA replication, thus cells create mutations.

Side-Bar On Mutagenesis

- Mutations within a gene are generally base-substitutions or small deletions/insertions (i.e., frame shifts).
- Such alteration are generally called point mutations.
- The Ames scheme based on strains of *Salmonella* provide the corresponding experimental data.

Side-Bar On Mutagenesis

- The Ames mutagenicity assay (see OECD guideline 471) is designed to assess the ability of a chemical to cause point mutations in the DNA of the bacterium *Salmonella typhimurium*.
- The Ames test includes a number of strains (TA1537, TA1535, TA100, TA98 and TA97) that have been engineered to detect differing classes of mutagenic chemicals.
- The basic test only detects direct acting mutagens (i.e., those chemicals able to interact with DNA without the need for metabolic activation).

Side-Bar on Metabolic Activation

- The inclusion of an S9 mix of rodent liver enzymes is designed to assess those chemicals requiring metabolic activation in order to be mutagenic.
- Typically, chemicals are assayed both without S9 and with S9 with results being reported in a binary fashion
- A positive result in any of the bacterial strains with or without S9 confirms mutagenic potential.

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Chemical input

Chemical Input Overview

- As you leader in the previous tutorials, this module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemicial is the correct one.

Chemical Input Ways of Entering a Chemical

- Remember there are several ways to enter a target chemical and the most often used are:
 - •CAS#,
 - SMILES (simplified molecular information line entry system) notation, and
 - Drawing the structure
- Click on Structure.
- This inserts the window entitled "2D editor" (see next screen shot).

Chemical Input Input target chemical by drawing

Chemical Input Input target chemical by SMILES

- In the Aqua-coloured area next to "SMILES/InChi" type CCCCCC=0.
- Note as you type the SMILES code the structure is being drawn in the centre of the structure field (see next screen shot).
- Click "OK" to accept the target chemical.

Chemical Input Input target chemical by SMILES

1. Type CCCCC=0 in SMILES/InChi window; 2. 2D structure; 3. Click OK

Chemical Input Input target chemical by SMILES

The Toolbox now searches the Toolbox databases and inventories for the presence of the chemical with structure related to the current SMILES notation. It is depicted as a 2D image.

Two chemicals are found. All found chemicals are selected by default.

	Select chem	nicals					_		×	
-	Select All	Clear All I	nvert Selection	Selected 2 of 2		010 h	20. Ål			
	Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D	<u> </u>	
	1. Yes	66-25-1				1:: High Qualit	1:: High Qualit	: High	Qualit	
						1:: Aquatic	A 1:: USER D		1:: A	
			CCCCCC=0	/CH3	1: hexa	2:: Biodegr	2:: USER D		2:: A	
					2: hexa	3:: Canada	A 3:: TSCA		3:: Bi	
				//	3: hexy	4:: DSST0	A 4:: ECHA P		4:: Ca	
				Ū.		5:: ECHA P	5:: Aquatic	_	5:: DS	
						6:: ECOTO	6:: REACH	<u>_</u>	6:: E0	
	2. Yes	110-62-3	CCCCCC=0	1		7 ·· FINECS	7 ·· NICNAS		7. F(
						1 High Qualic				
						2:: Aquatic				
				CH3		311 ECHA C	1:: Low Quality	: Low	Quality	
1 4				,	1: valer	4 ECHA P	1:: GSH Ex		1:: G	
						511 GSH EX				
						6:: Genoto				
				ļ		7. HPVC 0				
	< 2									
-							- M			
	Tautomeric sets O Search									
			•							

1. **Unselect** the second chemical by clicking on the "Yes"; 2. **Click** OK.

Chemical Input Target chemical identity

- You have now selected your target chemical.
- Click on the box next to "Substance Identity"; this displays the chemical identification information (see next screen shot).
- It is important to remember that the workflow is based on the structure coded in SMILES.

Chemical Input Target chemical identity

The workflow on the first module is now complete; click on "Profiling" [1] to move to the next module.

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Chemical input
 - Profiling

Profiling Overview

- As you may remember, "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox.
- Available profilers includes likely mechanism(s) of action which have been show to be useful in forming categories that include the target chemical.

Profiling Profiling the target chemical

- The outcome of the profiling determines the most appropriate way to search for analogues (detailed information in Manual for getting started (Chapter 4) <u>http://www.oecd.org/dataoecd/58/56/46210452.pdf</u>
- Table 4-1 in chapter 4 (Manual for getting started) lists a selection of profilers and their relevance for different endpoints of regulatory relevance.
- For this example, the following general mechanistic profiling methods are relevant to genetic toxicity:
 - DNA binding by OASIS v1.4- mechanistic grouping
 - DNA binding by OECD mechanistic grouping
 - Protein binding by OASIS v1.4 mechanistic grouping
 - Protein binding by OECD mechanistic grouping
 - Carcinogenicity (genotox and nongenotox) alerts by ISS endpoint specific
 - DNA alerts for AMES by OASIS v.1.4 endpoint specific
 - in vitro mutagenicity (Ames test) alerts by ISS endpoint specific
 - in vivo mutagenicity (Micronucleus) alerts by ISS endpoint specific
 - Organic function groups empiric

Profiling Profiling the target chemical

- Select the "Profiling methods" related to the target endpoint.
- This selects (a green check mark appears) or deselects(green check disappears) profilers.
- For this example, select the profilers relevant to genetic toxicity (see next screen shot).

1

Profiling Profiling the target chemical

	FID F Profiling	► Endpoint	Category Definition	01010 01 01 ▶ Data Gap Filling	► Report	ூ ⊚ ⊗ 🤸 <u>A</u> bout Update
Apply New View Delete						The OECD QSAR Toolby for Grouping Chemicals into Categories Developed by LMC, Bul
Profiling methods Select All Unselect All Invert About Inverted Inverted About Inverted About Inverted Inverted Inverted About Inverted Inverted About Inverted About Inverted Inverted Inverted About Inverted Inverted Inverted About Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted	Filter • • • • • • •	endpoint tree Structure Substance Identity Physical Chemical P Environmental Fate a Ecotoxicological Info Human Health Hazar	roperties ind Transport mation ds	[1 [target]	F*	

1. Check the profilers related to the target endpoint (see slide 30); 2. Click Apply

Profiling Profiling the target chemical

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target chemical (see next slide).
- Please note the specific profiling results by DNA, Protein binding, and Organic functional groups.
- These results will be used to search for suitable analogues in the next steps of the exercise.

Profiling Profiles of n-hexanal

QSAR TOOLEO	IX Finput	F In L I J F Profiling) Endpoint	Category Definition	01010 01 1 10100 > Data Gap Filling	► Report	⑤ 🕝 🛞 🔧 🗒 <u>A</u> bout Update		
Profiling Profiling Sch	emes X Delete						The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria		
Pro	filing methods	Filter endp	point tree		1 [target]				
Select All Unselect All Ionization at pH = 7.4 Ionization at pH = 9 Protein binding by OASIS v Protein binding by OED Protein binding potector	Invert About	Stru	ucture		<i></i>	~~~~~~~			
Toxic hazard classification	by Cramer (extension) by Cramer (original)	ESut EPhy Env Env	ostan ⊟Profile /sical /ironn btoxic	shanistic ng by OASIS v.1.4	No alert found				
Acute aquatic toxicity dass Acute aquatic toxicity MOA Aquatic toxicity MOA Aquatic toxicity dassificati Bioaccumulation - metabolis Bioaccumulation - metabolis	ification by Verhaar (Modified) . by OASIS .n by ECOSAR .m alerts .m half-lives	⊞Hur ⊞Pro	file DNA bindi	ng by OECD	Schiff base forn Schiff base forn Schiff base forn Schiff base forn	Schiff base formers Schiff base formers >> Direct Acting Schiff Base Formers Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehydes Schiff base formation			
1. Double open th	e click on the e nodes of the	box ⊞ to e tree.	Protein bi	nding by OASIS V1.4	Schiff base forn Schiff base forn Schiff Base For Schiff Base For Schiff Base For	Schill base formation >> Schill base formation with Carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds >> Ald Schiff Base Formers Schiff Base Formers >> Direct Acting Schiff Base Formers Schiff Base Formers >> Direct Acting Schiff Base Formers >> Mono-carbonyls			
			-Endpoint Sp	ecific					
Select All Unselect All Documented	Invert About	^	Carcinoge	nicity (genotox and nongenotox)	alerts b Simple aldehyd Structural alert	e (Genotox) for genotoxic carcinogenicity	1		
Observed Mammalian meta	bolism		DNA alert	s for AMES by OASIS v.1.4	No alert found				
Observed Microbial metabo	bolism		in vitro mu	tagenicity (Ames test) alerts by	SS Simple aldehyd	Simple aldehyde Simple aldehyde			
Observed Rat Liver S9 me	tabolism		in vivo mut	agenicity (Micronucleus) alerts b	y ISS Simple aldehyd				
Autoxidation simulator									
Autoxidation simulator (alk	aline medium)	~	Greanic F	Crganic Functional groups Aldehyde					
1 Tutorial 3									

Profiling Profiles of n-hexanal

QSAR TOOLEOX Profiling Schemes	Input	► Endpoint → Ca	ategory Definition	01010 01 01 ▶ Data Gap Filling	•	In this case there is structural evidence that the target has positive DNA and Protein binding alert	
Apply New View Delete Profiling methods Select All Unselect All Invert Biodeg ultimate (Biowin 3) V DNA bindling hy QASIS v. 1.4	Filter endpoint tree	1 [target]		•	This allows to bind covalently to DNA This mechanistic information is important for the grouping of		
 ✓ DNA binding by OECD DPRA Cysteine peptide depletion DPRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 7)(Hydrowii Hydrolysis half-life (Kb, pH 7)(Hydrowii Hydrolysis half-life (Kb, pH 7)(Hydrowii Hydrolysis half-life (Kb, pH 8)(Hydrowii Hydrolysis half-life (CH 6.5-7.4) Ionization at pH = 1 Ionization at pH = 7.4 			<i>پ</i>	1. 2.	Right click on the box with profiling result by DNA binding by OECD. Left Click on the "Explain" box to see why the target is profiled as "Mono- aldehydes" by DNA binding by OECD (see next slide).		
I Ionization at pH = 9 Protein binding by OASIS v1.4 Protein binding by OECD Protein binding potency Superfragments Toxic hazard classification by Cramer (Toxic hazard classification by Cramer (I Illimate bioden	DNA binding by OASIS v.1.4 DNA binding by OECD Protein binding by OASIS v1.4	No alert tound Schiff base form Schiff base form Schiff base form Schiff base form Schiff base form Schiff base form Schiff Base Form	ers ers >> Direct Acting Sch ers >> Direct Acting Sch ation ation >> Schiff ba ation >> Schiff ba mers	iff Base Form iff Base F.	ers Copy Explain Component Profile Statistics		
Metabolism/Transformations Select All Unselect All Invert Documented Observed Mammalian metabolism Observed Microbial metabolism Observed Rat In vivo metabolism Observed Rat In vivo metabolism Observed Rat Liver S9 metabolism Simulated Autoxidation simulator Autoxidation simulator (alkaline medium)		nongenotox) alerts b SIS v.1.4 est) alerts by ISS cleus) alerts by ISS	Schiff Base Forn Schiff Base Forn Simple aldehyde Structural alert fr No alert found Simple aldehyde Simple aldehyde	ners			

Profiling Profiles of n-hexanal

QSAR TOOLBOX) Input	FI ► Profiling	► Endpoint	► Category Defin	01010 01 1 10100 tion > Data Gap Filling	Report	⑤ @ 🐼 🔧 🗒 About Update
Profiling Profiling Schemes Image: Scheme state st							The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Profiling methods	Filter endpoint t	ree		1 [target]			
Select All Unselect All Invert Biodeg ultimate (Biowin 3)	Structure	9			<i>و</i>		
DPRA Lysine peptide depletion DPRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 7)(Hydrowi Hydrolysis half-life (Ka, pH 8)(Hydrowi Hydrolysis half-life (Kb, pH 7)(Hydrowi Hydrolysis half-life (Kb, pH 8)(Hydrowi	⊞Substan ⊞Physica ⊞Environn ⊞Ecotoxic	ce Identity I Chemical Properties nental Fate and Transpo cological Information	nt			1.	Right click on the box with profiling result by DNA binding by OECD.
Hydrolysis half-life (b), pH o)(Hydrolwi Hydrolysis half-life (bH 6.5-7.4) Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 ✓ Protein binding by OASIS v1.4 ✓ Protein binding potency	⊞Human H ⊟Profile -⊟Gener - DN/	Health Hazards al Mechanistic A binding by OASIS v.1.	4	No alert fo Schiff base Schiff base	Ind formers formers >> Direct Acting Si formers >> Direct Acting Si	2.	Left Click on the "Explain" box to see why the target is profiled as "Mono-aldehydes" by DNA binding by OECD (see
Superfragments Toxic hazard da: Coxic hazard da: Chemical profile Chemical profile Chemical profile Chemical profile Chemical profile Chemical profile Chemical profile Schiff base Schiff base	OECD formers formers >> Direct	Acting Schiff Base Formers Acting Schiff Base Formers :	- 🗆 X	Schiff base Schiff base Schiff base Schiff Base Schiff Base	formation formation >> Schiff base fo formation >> Schiff base fo e Formers e Formers >> Direct Acting s Formers >> Direct Acting s	rma rma 3. Sch Sch	The window with chemical profiles appears, click "Details" to see detailed explanation
Docum Observed Microb Observed Rat In Observed Rat In Observed Rat Liver S9 metabolism Simulated Autoxidation simulator Autoxidation simulator (alkaline mediun)		Close Constant of the second	test) alerts by 133 ucleus) alerts by 15	b Simple ald Structural No alert fo Simple ald Aldehvde	ehyde (Genotox) alert for genotoxic carcinoge Ind ehyde ehyde	nicity	
Profiling DNA binding by OECD of n-hexanal

DNA binding by OECD		
	Mono aldehydes	
Target	Boundaries Training set Options Boundary Options Metabolism Fragment C(H)(C(sp3))=O(V2) Image: Construction of the set of the	1 Edit
	Structural alert: Mono-aldehydes 3 O R H R = sp3 carbon, hydrogen	ments
 Structural boundaries of Mechanistic justification 	the category; 2. Definition of the used common fragm of the category	ents;

Outlook

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise

Workflow of the exercise

- Chemical input
- Profiling
- Endpoint

Endpoint Overview

- As you should remember, "Endpoints" refer to the electronic process of retrieving the fate and toxicity data that are stored in the Toolbox database.
- Note, data can be gathered in a global fashion (i.e., collecting all data of all endpoints) or on more narrowly defined settings (e.g., collecting data for a single or limited number of endpoints).

Endpoint Case study

 In this example, we limit our data gathering to the common genotoxicity endpoints from databases containing genotoxicity data (Carcinogenicity & Mutagenicity ISSCAN, Genotoxicity OASIS, Micronucleus ISSMIC, Micronucleus OASIS and Toxicity Japan MHLW).

Endpoint Gather data

Endpoint Process of collecting data

Toxicity information on the target chemical is electronically collected from the selected datasets.

A window with "Read data?" appears. Now the user could choose to collect "all" or "endpoint specific" data.

QSAR	- TOO	LBOX	<	₽		Ê	.	01010 01 1 10100		🕤 🕝 🔕 🔧 🗒 <u>A</u> bout Update
			► Ir	put	Profiling	Endpoint	Category Definition	Data Gap Filling	▶ Report	
Data		import	B.	Export 'vgj		elete Ta	utomerize			The OECD QSAR Toolbox for Grouping Chemicals into Categories
<u>G</u> ather	Import	IUCLID5	Export		<u>D</u> atabase	Inventory Dat	abase			Developed by LMC, Bulgaria
	Databases	5	Filter	endpoint tree			1 [target]			
Select All Ur	nselect All	Invert About								
🗸 🔗 Human	n Health Haza	ards	~					,		
- Acu	te Oral Toxicity	/ database (Chem		Structure				~		
Bac	terial mutageni cipogenic Poter	city ISSSTY						6		
Caro	cinogenicity&m	utagenicity ISSCA								
🗖 Cell	Transformation	n Assay ISSCTA	Œ	Substance Ide	ntity					
Den	dritic cells COL	IPA	Œ	Physical Cher	nical Properties					
Dev	elopmental & H	reproductive Toxic	Œ	Environmental	Fate and Trans	port				
ECH	A CHEM		Œ	Ecotoxicologio	al Information					
📃 ECC	отох		Œ	Human Health	Hazards					
Estr	rogen Receptor	r Binding Affinity C	Œ	Profile Re	ad data?				×	
Gen	otoxicity OASI	s								
🛄 Hum	nan Half-Life			(All endpoints	◯ Choose 🗹 fr	om Tautomers	OK Cano	el	
Kera	atinocyte gene	expression Givau								
Micro	onucleus ISSM	expression Lusen								
🗹 Micr	onucleus OASI	s						4		
🛄 MUN	NRO non-cance	er EFSA								
Rep	Dose Tox Frai	unhofer ITEM								
Rod	lent Inhalation	Toxicity Database						-		
	Iirritation									
Skin	sensitization									
Skin	1 sensitization E CastDR	CETOC								
- Toxi	icity Japan MHI	LW								
Tox	RefDB US-EPA									
Yea:	st estrogen as	say database								
	ET database		-							
<		>								
	Inventorie									
Select All Ur	nselect All	Invert About					الحام ما	المائم بالم		
Canada DSI					. CII	C K UK TC	read all	availab	ie data	
COSING			~							

Endpoint Process of collecting data

In this example, an insert window appears stating that there was 2 data points available for the target chemical appears.

Endpoint Process of collecting data

In this example, an insert window appears stating that there was 2 data points available for the target chemical appears.

QSART	тоосвох	F Inj	Ð put	FIT Frofiling	► Endpoir	nt → Cate	gory Definition	01010 01 1 10100 ▶ Data Gap Filling	► Report		'5 🕝 🐼 🔧 🔛 <u>A</u> bout Update	
Data	Import		Export	De	elete	Tautomerize					The OECD QSAR Toolbox for Grouping Chemicals	
Gather	Import TUCITOS	Export		Database	Toventory	di Database					into Categories	
Gounci	Inport I <u>O</u> ccipis	Export	Toccupa	Database	Inventory	Database				7	Developed by LMC, Bulgaria	
	Databases	Filter	r endpoint tree				1 [target]					
Select All Unsele Physical Cl Environme Cotoxicol V V Human He Acute O Bacteria Carcinog	Invert About Ihemical Properties ental Fate and Transport ental Fate and Transport bogical Information ealth Hazards oral Toxicity database (Chemilal mutagenicity ISSSTY genic Potency Database (CPE) bogical Toxicity database (Chemilal mutagenicity ISSSTY	^	Structure ⊡Substance lo ⊡Physical Chi	lentity emical Properties				<u></u>				
- Zarcinog	genicity&mutagenicity ISSCA	6	Environment	al Fate and Trans	sport							
Cell Tran Depdritio	nsformation Assay ISSCTA ic cells COLIPA		Ecotoxicolog	ical Information								
Develop	omental & Reproductive Toxic	Ę	Human Heal	h Hazards								
- Develop	omental toxicity ILSI		-Acute Tox	city								
ECOTOX	X		-Bioaccum	ulation								
- Estroger	n Receptor Binding Affinity O		- ECarcinoge	nicity								
Eye Irrit	tation ECETOC		- EDevelopme	ntal Toxicity / Te	ratogenicity							
Human H	xicity OASIS Half-Life		- Genetic To	xicity								
Keratino	ocyte gene expression Givaud		- In Vitro									
- Keratino	cyte gene expression LuSen		- 🖓 Bacte	rial Reverse Muta	ation Assay (e.g.	Ames Test)						
Micronuc	Ideus ISSMIC			e Mutation								
MUNRO	non-cancer EFSA			almonella typhim	nurium							
	se Tox Fraunhofer ITEM			With S9		(1/1)	M: Negative	<u>~</u>				
Repeate	ed Dose Toxicity HESS RE			Without S9		(1/1) M: Negative					
Skin Iirri	Inhalation Toxicity Database itation			Undefined Metal	bolic Activation							
- Skin sen	nsitization			amage and Rep	air Assay, Unsch	neduled D		1				
Skin sen	sitization ECETOC			React. (Ashby Fr	agments)							
ToxCast	DB Japan MHI W		-⊞In Vitr	o Mammalian Ch	romosome Aber	ration Test						
ToxReft	DB US-EPA		L L Sister	Chromatid Exch	ange Assav							
Yeast es	strogen assay database	~	L⊞In Vivo									
<	>		-Immunoto:	dicity								
	Inventories		- Irritation /	Corrosion								
Select All Unsele	ect All Invert Abou		-Neurotoxic	ity			1					
Canada DSL			- Photoindu	ed Toxicity						1	I here are	e two negative
COSING DSSTOX			-Repeated	Dose Toxicity							There are	e two negative
ECHA PR			⊞Sensitisat	on		AOF					ovnorime	ntal data for
HPVC OECD			-ToxCast								experime	lilai uala 101
METI Japan			- Toxicity to	Reproduction			1					
REACH ECB			- Toxicokine	tics, Metabolism	and Distribution		1				the targe	et chemical
US HPV Challenge	e Program	8	EProfile								the targe	e cherneur

Endpoints Recap

- You have entered the target chemical by SMILES and found it to be n-hexanal with the CAS# [66-25-1].
- You have profiled the target chemical and found 2 experimental data is available for n-hexanal.
- In other words, we will try to reproduce the experimental data by using read-across approach.
- Click on "Category definition" to move to the next module.

Outlook

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise

Workflow of the exercise

- Chemical input
- Profiling
- Endpoint
- Category definition

Category Definition Overview

- As stated in the previous tutorials, this module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- Remember, this is the critical step in the workflow of the Toolbox.
- Several options are available in the Toolbox to assist the user in defining the category definition.

Category Definition Side-Bar on Mutagens

- It is important to remember that mutagens are really cell-damaging agents, which can create a wide array of adverse effects beyond damage to DNA.
- Lets take a moment to review our mechanistic profile of the target chemical (see next screen shots).

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.
- Detailed information about grouping chemical (Chapter 4) could be downloaded from: http://www.oecd.org/dataoecd/58/56/46210452.pdf
- For this example, we will start from a broad group based on Organic functional group and after that
- Will refine the category by a specific DNA binding mechanism identified for the target chemical and find analogues which can bind by the same mechanism and for which experimental results are available.

Category Definition Which of the category to be defined?

QSAR Toolbox 3.4.0.5 [Tutorial_3]			– 🗆 X	
QSAR TOOLBOX	Imput Imput	Data Gap Filling	● @ & 、 E About Update eport	
Categorize	Delete Image: Second system X X ize Combine Clustering Delete Delete	1	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria	
Grouping methods DNA alerts for CA and MNT by OASIS v. 1.	Filter endpoint tree	1 [target]	^	
Eye irritation/corrosion Inclusion rules by in vitro mutagenicity (Ames test) alerts by in vivo mutagenicity (Micronudeus) alerts	Structure	8	👔 In this d	case n-hexanal has
Keratinocyte gene expression Oncologic Primary Classification			structur	al evidence that it is
Protein binding alerts for Chromosomal ab Protein binding alerts for skin sensitization	Toxicity to Reproduction		has pos	itive DNA binding
Respiratory sensitisation Retinoic Acid Receptor Binding	닉비loxicokinetics, Metabolism and Distribution 타마이터		alert ba	sed on general
Skin irritation/corrosion Exclusion rules by	General Mechanistic DNA binding by OASIS v1.4	No.eleccoupa	mechan	istic DNA profilers.
Empiric Chamical elements		Schiff base formers	Howeve	r there is no evidence
Groups of elements	DIVA binding by DECD	Schiff base formers >> Direct Acting Schiff E Schiff base formers >> Direct Acting Schiff E	ase Formers. that the	target will elicit
Organic Functional groups Organic Functional groups (nested)	-Protein binding by OASIS v1.4	Schiff base formation >> Schiff base formation Schiff base formation >> Schiff base formation		DNA offect based on
Organic functional groups (US EPA) Organic functional groups, Norbert Haider	— Protain hinding by OECD	Schill base formation >> Schill base formation Schiff Base Formers Schiff Base Formers >> Direct Acting Schiff		DNA effect based off
- Structural similarity Tautomers unstable		Schiff Base Formers >> Direct Acting Schiff	Base Former	it specific DNA profiler.
✓ Toxicological ✓ ✓ ✓	Carcinogenicity (genotox and nongenotox) alerts by I	Simple aldehyde (Genotox)	Based o	on this it is appropriate
Defined Categories	DNA alerts for AMES by OASIS v.1.4	No alert found	to ident	ify analogues based
	in vitro mutagenicity (Ames test) alerts by ISS	Simple aldehyde Simple aldehyde	on struc	tural similarity with
		Aldehyde	respect	to OFG profiler.
1. Click on Cate	egory Definition		• •	•

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Category Definition Defining Organic functional group

Highlight "OFG"; 2. Click Define; 3. The target category is Aldehydes Confirm the category; 4. Click OK

v

Category Definition Defining Organic functional group category

QSAR TOOLEOX	Input Implication	€ Endpoint	ategory Definition	01010 01 1 10100 Data Gap Filling	► Report	⊚ @ 😣 🔧 🖥 About Update
Categorize		Delete			The for G	DECD QSAR Toolbox rouping Chemicals
🔤 🐹 🍝	urize Combine Clusterina	Nelete Delete All			into	Categories
	nze <u>combine cl</u> ustening				Deve	loped by LMC, Bulgaria
Grouping methods	Filter endpoint tree		1 [target]			^
Eve irritation/corrosion Exclusion rules by	·					
Eye irritation/corrosion Inclusion rules by E	Structure			C**		
in vitro mutagenicity (Ames test) alerts by	Structure			<i></i>		
Keratinocyte gene expression						
Oncologic Primary Classification	ToxCast					
Protein binding alerts for Chromosomal ab Protein binding alerts for skin sensitization	- Toxicity to Reproduction	1	1			
Respiratory sensitisation	- Toxicokineti	in and Distribution	1			
Retinoic Acid Receptor Binding	Profile Define categ	jory name		×		
Skin irritation/corrosion Exclusion rules by	General Me Category na	me (107 chemicals) Aldehyde (Orga	anic Functional groups)			
Skin irritation/corrosion Inclusion rules by I	DNA bind					
Chemical elements	DNA bind		ок	ancel	Cohiff Raso Formara	
···· Groups of elements	DIVA bind		Schiff base vme	ers >> Direct Acting \$	Schiff Base Formers	
Lipinski Rule Oasis			Schiff bas	n		
Organic Functional groups (nested)	Protein binding by OA	ASIS v1.4	Schiff bas	n >> Schiff base f	ormation with carbo.	
Organic functional groups (US EPA)			Schiff Base - on	TOTS	ormation with carbo.	
Organic functional groups, Norbert Haider Structural similarity	Protein binding by OE	ECD	Schiff Base Form	ners >> Direct Acting	Schiff Base Former	5
Tautomers unstable			Schiff Base Form	iers >> Direct Acting	Schiff Base Former	
✓ Toxicological	, Elizinapoint Specific		. Simple aldehvde	(Genotox)		
Defined Categories	Carcinogenicity (geno	tox and nongenotox) alerts by	Structural alert fo	r genotoxic carcinog	enicity	
Tutorial_3	DNA alerts for AMES	by OASIS v.1.4	No alert found			
	in vitro mutagenicity (Ames test) alerts by ISS	Simple aldehyde			
	in vivo mutagenicity (Vicronucleus) alerts by ISS	Simple aldehyde			
			Aldohudo			-
			Altenvite			¥
1. Click OK to co	onfirm the nam	he of the cate	gory			

Category Definition Analogues

- The Toolbox now identifies all chemicals corresponding to category "Aldehydes" by Organic functional groups listed in the databases selected under "Endpoints".
- The name of the category appears in the "Defined Categories" window, the number in brackets is the number of substances belonging to the category (107 analogues including the target chemical are identified)

Category Definition Read data for Analogues

- The Toolbox automatically request the user to select the endpoint that should be retrieved
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below)

• In this example, as only databases are selected that contain information for genetic toxicity endpoint, so both options give the same results.

Category Definition Read data for Analogues

Due to the overlap between the Toolbox databases same data for intersecting chemicals could be found simultaneously in more than one databases. The data redundancy is identified and the user has the opportunity to select either a single data value or all data values.

Repeated values	s for: 74 data-points, 37 g	roups, 36 chemicals			- 0	\times
Data points						
	Endpoint	CAS	Structure	Value	Author 🔨 Sele	ct one
	Gene mutation	123-11-5	, c++	Negative	National Cancer 1 Institute	vert
	Gene mutation	123-11-5	¥	Negative	National Cancer Institute	eck All
	Gene mutation	104-88-1	Ś	Negative	National Cancer Unch Institute	neck All
	Gene mutation	104-88-1		Negative	National Cancer Institute	
	Gene mutation	110-62-3	CP%	Negative	National Cance 2	I OK
	Gene mutation	110-62-3	6	Negative	National Cancer	
1. Cl	ick Select	one and ther	2. Click	ОК	× ×	Cancel

Category Definition Summary information for Analogues

The experimental results for the analogues are inserted into the matrix.

C QSAR	R Toolbox 3.4.0.5 [Tutorial_3]												– 🗆 ×
qsı	RR TOOLBOX	► In	+) iput	FID Frofiling	Endpo	int Category	Definitio	01010 10100 n → Data Gap Filling	► Report				⑤ 🕝 😣 🔧 🗒 About Update
<u>aio</u> Define	Cat E Define with metabolism Su	utegorize	ea Combine	ිම් Cļustering	Delete	e All							The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
	Grouping methods			Filter endpoint tree				1 [target]		2	3	4	5 ^
Bi Ca Di Di Di Di	odegradation fragments (BioWIN N arcinogenicity (genotox and nonge ART scheme v.1.0 NA alerts for AMES by OASIS v.1.4 NA alerts for CA and MNT by OASI ye irritation/corrosion Exclusion rule	MITI) enotox) alerts by 4 IS v. 1. 1 les by BfR	/ ISS	Structure				الم الم		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	cr, <		CH3
- Ey	ye irritation/corrosion Inclusion rule	es by BfR			itv								
- in	i vitro mutagenicity (Ames test) ale i vivo mutagenicity (Micropudeus) a	erts by 155 electe by ISS		Example 2 Chemic	al Properties								
— Ке	eratinocyte gene expression	alei a 6 y 200		Experimental E	, ate and Transpo	rt							
-0	ncologic Primary Classification			Ecotoxicological	Information								
- Pr	rotein binding alerts for Chromoson	mal aberration b	y OA	EHuman Health H	azarde								
Pr	rotein binding alerts for skin sensiti: emiratory consitiontion	ization by OASIS	5 V1.		azarus		(1(1)					M: >2E3 mg/kg	
R	etinoic Acid Receptor Binding						(1/1)					W. ZEJ Highty	
rti	ER Expert System ver. 1 - USEPA			Bioaccumulati	on								
— SI	kin irritation/corrosion Exclusion rul	les by BfR		- ⊕Carcinogenicit	У		(10/28)						
SI	kin irritation/corrosion Inclusion rule	es by BfR			I Toxicity / Terat	ogenicity							
C Empi	riC hemical elemente			- Genetic Toxici	ity								
G	roups of elements			-🖓 In Vitro									
Lip	pinski Rule Oasis			Bacterial	Reverse Mutatio	n Assay (e.g. Ames	Test)						
0	rganic Functional groups			Gene N	lutation								
-0	rganic Functional groups (nested)			-#Esch	erichia coli	((2/4)					M: Negative, Negative	
	rganic functional groups (US EPA) irganic functional groups, Norbert F	Haider (checkmo	n		onella typhimuri	um							
-St	tructural similarity		~		S9 Info		(81/81)			M: Negative	M: Negative	M: Negative	M: Negative
Ta	automers unstable				th S9		45/174)	M: Negative		M: Negative, Negat	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat
· · Toxic	cological				thout S9		40/187)	M: Negative		M: Negative Negat	M: Negative Negat	M: Negative Negat	M: Negative Negat
Re	epeated dose (HESS)		~		defeered Massachal		43/10/)	in: Hogaire		in: Hoguno, Hogu	ini Hoguino, Hoguin	ini: Hogaino, Hogaini	III. Hogatilo, Hogatil
<		_	>		delined wetaboli	C Activation							
	Defined Categories			HEDNA Dam	age and Repair.	Assay, Unschedule	a D						
 Tutoria 	al_3 071 Aldahuda (Oseania Eurotianal d			H±DNA Rea	ct. (Ashby Fragr	nents)							
[1	07] Aldenyde (Organic Functional (groupsy		⊢⊞In Vitro M	lammalian Chror	nosome Aberrati	(10/18)					M: Negative, Negative	
				−⊞Mammali	an Cell Gene Mu	tation Assay	(4/4)						
				L⊞Sister Ch	romatid Exchang	ge Assay							~
				<									>
107 Aldeh	vde (Organic Functional groups	s)											

Category Definition Side-Bar of experimental data

055		, 🤇	₽	<u>=</u>	(01010						5 3 3 3 🗄
ų s r) In	put	 Profiling 	► Endpo	int ▶ Cat	egory Definition	Data Gap F	illing)	Report				<u>A</u> bout <u>U</u> pdate
		Categorize	8	2	Delete	<								The OECD QSAR Toolbox for Grouping Chemicals into Categories
<u>D</u> efine	Define with metabolism	<u>S</u> ubcategorize	<u>C</u> ombine Cļus	tering	<u>D</u> elete D <u>e</u> let	e All								Developed by LMC, Bulgari
	Grouping methods	;	Filter end	point tree				1 [target]			2	3	4	5 ^
Bio Car DA DN DN Eye	vdegradation fragments (BioWI) rcinogenicity (genotox and non RT scheme v. 1.0 IA alerts for AMES by OASIS v. IA alerts for CA and MNT by OA e irritation/correspond Such visco	NMITI) genotox) alerts by 1.4 SIS v.1.1 vloc by PP	St	ructure					رمین میں		^{مسر} مر ⁵⁴ ء	cr, <		//сн»
Eye	e irritation/corrc 🔃 Data poi vitro mutagenicia	nts	Mahar	Orisia Israina	Oteria	0	Distant	T = 4 = = = = 1 = = =	- 0	×				
in v Ker	vivo mutagenicit ratinocyte gene	Endpoint	Value	Original value	Strain	source of methabolic system	Phylum	(species)	Type of method	genotoxi city				
- On Pro Pro	ncologic Primary otein binding ale otein binding ale	Gene mutation	Negative (Gene mutation I)	Negative (Gene mutation I)	TA 98	rat	Proteobacteria	Salmonella typhimurium	In Vitro	Gene mutation				
- Re: - Re:	spiratory sensiti tinoic Acid Rece												M: >2E3 mg/kg	
-rt≞ Ski	in irritation/corrc													
- Empiri	ic 2	Gene mutation	Negative (Cene	Negative (Cane	TA 100	rat	Protechacteria	Salmonalla	la Vitro	Gene				
Chi Gro	emical elements ² oups of element ³	Gene mutation	Negative (Gene mutation I)	Negative (Gene mutation I)	TA 1535	rat	Proteobacteria	Salmonella	In Vitro	Gene				
Lipi	inski Rule Oasis		matadomiy	matation ly				cyphinianam		motation				
Org	ganic Functional	Gene mutation	Negative (Gene	Negative (Gene	TA 1537	rat	Proteobacteria	Salmonella	In Vitro	Gene			M: Negative Negative	
Org	ganic functional ⁵	Gene mutation	Negative (Gene Negative (Gene	Negative (Gene Negative (Gene	TA 1556 TA 97	rat	Proteobacteria	Salmonella	In Vitro	Gene			in riogano, riogani	
Str	ructural similarity <									>	M: Negative	M: Negative	M: Negative	M: Negative
Tau Tau	utomers unstabl									\sim	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat
<	peated dose (HESS)		→	-⊞Witl	nout S9 efined Metabo	lic Activation	(49/187)	M: Negative	1	\int	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat
	Defined Categorie	S		- EDNA Dama	age and Repair	Assay, Unsch	eduled D							
 Tutorial Tro 	l_3)7] Aldehvde (Organic Eurotion:	al groups)		H±]DNA React	t. (Ashby Frag	ments)	-1: (10/10)						M: Negative Negative	
110		<u> </u>			immalian Chro	mosome Aberr	au (10/18)						w. wegative, wegative	
1.	Double detailed	e-clic	k on ' rmati	the co on in	ell wi drop	th mo dow	easur n box	ed da	ata to	se	е			×

Category Definition Recap

- You have identified a category consisting of 105 analogous ("Aldehydes" by OFG classification) with the target chemical (n-hexanal).
- The available experimental data for these 105 similar chemicals are collected from the previously selected databases under Endpoint section.
- The user can proceed with "Filling data gap" module, but before that he/she should navigate throw the endpoint tree and find the gap that will be filled in.

- The user can navigate through the data tree by closing or opening the nodes of the tree.
- In this example, results from genotox testing are available (see next screen shot).
- In this example to see does the target is mutagenic or not, it is recommended to check subsequently the two mutagenic endpoints:
 - Ames without S9
 - Ames with S9
- By double clicking on the nodes of endpoint tree open the tree to the target: Bacterial reverse mutation (Ames) assay without S9 (i.e., double click on Human Health Hazards then double click on Genetic Toxicity followed by In Vitro and Bacterial Reverse Mutation Assay (e.g. Ames Test), Gene Mutation Salmonella typhimurium, Without S9) (see next screen shot).

QSAR TOOLBOX) Input	Find the second	Endpoint		Jory Definition D	01010 01 1 10100 ata Gap Filling	► Report	Ĺ	5 💿 ⊗ 🔧 🗒 About Update
Categ کی Define Define with metabolism Subc	gorize	Cļustering	Delete Delete Delete Delete Delete					The OI for Gro into Ca Develo	ECD QSAR Toolbox ouping Chemicals stegories ped by LMC, Bulgaria
Grouping methods	Filter endpoint tr Structure EEcotoxic Human H ECarcin Develo Geneti Develo Develo Develo Develo Develo Develo Develo Develo Develo Develo Dev	ee ological Information lealth Hazards Toxicity zumulation ogenicity pmental Toxicity / T c Toxicity itro acterial Reverse fut Gene Mutation Escherichia coli Escherichia coli Escherichia coli Escherichia coli Escherichia coli Escherichia coli Toxicity NA Damage and Rep NA React. (Ashby Fr Vitro Mammalian Ch anmalian Cell Gene ster Chromatid Exchivo vitotoxicity in / Corrosion	tity ation Assay (e.g. Ame nurium (9 nair Assay, Unschedul agments) nromosome Aberr (Mutation Assay nange Assay	(1/1), (1/1), 10/28), 10/28), 10/18, (2/4) № ed 10/18) (4/4) (8/14)	[target]	M: Negative, Negat	3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M: >2E3 mg/kg M: >2E3 mg/kg M: Negative, Negative M: Negative, Negative M: Negative, Negative	S A A A A A A A A A A A A A A A A A A A
[107] Aldenyde (Organic Hanctional gro	-⊞Photoi	oxicity nduced Toxicity							v

1. Click to Genetic Toxicity after that 2. Click to In vitro 3. Click to Bacterial Reverse Mutation Assay (e.g. Ames Test) and finally 4. Click Gene Mutation

QSAR TOOLBOX	Input Profiling	Endpoint ► Cat	tegory Definition	01010 01 1 10100 Data Gap Filling	Report	Ĺ	5 🙆 ⊗ 🔧 🗒 About Update
Categoriz	e 😂 😰 🗙	Delete				The Ol for Gro into Ca Develo	CD QSAR Toolbox uping Chemicals tegories ped by LMC, Bulgaria
Grouping methods Predefined Database Affiliation Inventory Affiliation OECD HPV Chemical Categories Substance Type US-EPA New Chemical Categories	Filter endpoint tree Structure		1 [target]	2	3	4]	s^
Biodeg BioHC half-fife (Biowin) Biodeg primary (Biowin 4) Biodeg probability (Biowin 1) Biodeg probability (Biowin 2) Biodeg probability (Biowin 5) Biodeg probability (Biowin 5) Biodeg probability (Biowin 7) Biodeg utbimate (Biowin 3) DNA binding by OASIS v.1.4	Ecotoxicological Information Human Health Hazards Acute Toxicity Bioaccumulation Carcinogenicity Ecore and the provided	(1/1) (10/28) genicity				M: >2E3 mg/kg	
DNA binding by OECD DPRA Cysteine peptide depletion DPRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 7)(Hydrowin) Hydrolysis half-life (Ka, pH 7)(Hydrowin) Hydrolysis half-life (Kb, pH 7)(Hydrowin)	Bacterial Reverse Mutation Gene Mutation Gene Mutation Salmonella typhimuriur Wno S9 Info	Assay (e.g. Ames (2/4) n (81/81)		M: Negative	M: Negative	M: Negative, Negative M: Negative	M: Negative
Hydrolysis half-life (b/f, b/r o)(Hydrowin) Hydrolysis half-life (b/f 6.5-7.4) Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 ✓ Defined Categories		(45/174) (49/187) Activation ssay, Unscheduled ents) psome Aberr (10/18)	M: Negative M: Negative	M: Negative, Negat M: Negative, Negat	M: Negative, Negat M: Negative, Negat	M: Negative, Negat M: Negative, Negat M: Negative, Negative	M: Negative, Ne M: Negative, Ne
Tutorial_3.tbw [107] Aldehyde (Organic Functional groups 1. Open	the tree to Salm	ation Assay (4/4)	phimuriu	ım			M: Inconclusive

	(T) (T)			01010) 🕝 🛞 🔧 🖁
QSAR TOOLBOX				10100		A	bout <u>U</u> pdate
	▶ Input ▶ Profiling	Endpoint	Category Definition	Data Gap Filling	Report		
Categorize	😂 😚 rize <u>C</u> ombine C ļustering	Delete Delete X Delete Delete All				The OE for Grou into Cat Develop	CD QSAR Toolbox uping Chemicals egories ped by LMC, Bulga
Grouping methods	Filter endpoint tree		1 [target]	2	3	4	5
Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox DART scheme v.1.0 DNA alerts for AMES by OASIS v.1.4	Structure			, , ,	er, - C , ^{- er,}	, C	,
 DNA alerts for CA and MNT by OASIS v. 1. 			_				
Eye irritation/corrosion Exclusion rules by		ties					
in vitro mutagenicity (Ames test) alerts by	⊞Environmental Fate and Tr	ansport					
 in vivo mutagenicity (Micronucleus) alerts Keratinocyte gene expression 	⊞Ecotoxicological Information	n					
··· Oncologic Primary Classification	Human Health Hazards						
Protein binding alerts for Chromosomal ab	- Acute Toxicity	(1/	(1)			M: >2E3 mg/kg	
Protein binding alerts for skin sensitization Respiratory sensitisation	-Bioaccumulation						
- Retinoic Acid Receptor Binding	- ECarcinogenicity	(10/2	8)_				
rtER Expert System ver.1 - USEPA	- ⊕Developmental Toxicity	Teratogenicity					
Skin irritation/corrosion Exclusion rules by	- Genetic Toxicity						
 Empiric 	- In Vitro						
Chemical elements	Bacterial Reverse N	lutation Assay (e.g. Ames					
- Groups of elements	Gene Mutation						
Organic Functional groups	-±Escherichia co	li (2/	(4)			M: Negative, Negative	9
··· Organic Functional groups (nested)	Salmonella typ	himurium					
Organic functional groups (US EPA)	-⊞No S9 Info	(81/8	1)	M: Negative	M: Negative	M: Negative	M: Negative
Structural similarity	-⊞With S9	(45/17	4) M: Megative	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat	M: Negative, №
Tautomers unstable	-⊞Without S9	(49/ 🧐	7) M: Negative	M: Negative, Negat	M: Negative, Negat	M: Negative, Negat	M: Negative, №
 Toxicological 	Undefined M	etabolic Activation					
Repeated dose (HESS)	- DNA Damage and F	Repair Assay, Unscheduled					
Defeed Categories	-⊞DNA React. (Ashby	Fragments)					
V Tutorial 3.tbw	-⊞In Vitro Mammalian	Chromosome Aberr (10/1	8)			M: Negative, Negative	9
[107] Aldehyde (Organic Functional groups)	H → → → → → → → → → → → → → → → → → → →	ne Mutation Assay (4/	(4)				
	Sister Chromatid E	kchange Assay					
	L⊞In Vivo	(8/1	4)				M: Inconclusiv

In order to examine the target endpoint "Ames without S9", select the cell as shown.

Category Definition Recap

- You have now retrieved the available experimental data on genetic toxicity for 107 chemicals classified as "Aldehydes" by OFG, found in the databases containing mutagenicity data.
- Only 49 out of 107 analogues have experimental mutagenicity data related to the target.
- You are now ready to fill in the data gap and trying to reproduce the experimental data of the target.
- In this example with qualitative mutagenicity data we can only use read-across.

Outlook

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise

Workflow of the exercise

- Chemical input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling
 - Ames without S9

QSAR TOOLBOX	Imput	5 🗟 🗙 🔧 🛔
Categorize	Ze <u>Combine</u> Clustering <u>Delete</u> Delete All	SAR Toolbox Chemicals Intercency rifes Developed by LMC, Bulg
Grouping methods Eye irritation/corrosion Exclusion rules by Bff Eye irritation/corrosion Inclusion rules by Bff in vitro mutagenicity (Ames test) alerts by IS in vivo mutagenicity (Micronudeus) alerts by Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for cKn sensitization by Respiratory sensitisation Respiratory sensitisation Retinoic Add Receptor Binding rtfB Event's System ver. 1 - USEPA	Options Image: Construction of the second secon	s , P , ng/kg
Skin irritation/corrosion Exclusion rules by Bfi Skin irritation/corrosion Indusion rules by Bfi Empiric Chemical elements Groups of elements	Connect Database in use p:\Program Files (x86)\Common Files\QSAR Toolbox\Ver 3.3\PB\TB33.NEW.06.12.2014.FDB Connect Server Q Assign Data by SMILES	
Organic Functional groups Organic Functional groups Organic functional groups (Nested) Organic functional groups (US EPA) Organic functional groups, Norbert Haider (c	C:\Users\Ksenia\Documents\QSAR Toolbox\Ver 3.3\UserDir\ Calculations Data format Warning messages	ve, Negative
Structural similarity Tautomers unstable Toxicological Repeated dose (HESS) Repeated dose (HESS)_2.9 Custom Barcelona issue	Memory cache size (values/calculator) List separator Range separator I When define chemical group 5,000 i i i i Max count of tautomers for parameter calculation and profiling Count of digits 3 i IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	re M: Negative re, Negat M: Negative, Ne re, Negat M: Negative, Ne
Case chudy 2	Max SMILES length for 3D calculations	re, Negative

In order to save model and export data for the analogues in Read-across analysis the user should set the specific options: 1. **Go** to Option; 2. **Open** Gap Filling panel; 3. **Open** Prediction and; 4. **Select** two radio buttons 3 and 5; 5. **Click** OK. (see next two slides)

In order to save model and export data for the analogues in Read-across analysis the user should set the specific options: 1. **Go** to Option; 2. **Open** Gap Filling panel; 3. **Open** Prediction and; 4. **Select** two radio buttons 3 and 5; 5. **Click** OK. (see next two slides)

The OECD QSAR Toolbox for Grouping Chemicals into Categories

QSAR TOOLBOX) Input	FID Profiling	€ Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report		⑤ ⓒ ⑧ 옷 🍟 🗒 About Update
Categorize	es ze <u>C</u> ombine C ļ u:	tering Del	Delete				The C for Gr into C Devel	DECD QSAR Toolbox ouping Chemicals ategories oped by LMC, Bulgaria
Grouping methods Eye irritation/corrosion Exclusion rules by BR Eye irritation/corrosion Exclusion rules by BR in vitro mutagenicity (Micronucleus) alerts by IS in vitro mutagenicity (Micronucleus) alerts by Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Skin sensitization bi Respiratory sensitisation Retinoic Add Receptor Binding rtER Expert System ver. 1 - USEPA Skin irritation/corrosion Inclusion rules by BR Chemical elements Groups of elements Lipinski Rule Oasis Organic Functional groups (US EPA) Organic functional groups Custom Barcelona issue race chity 2 Custom Companic functional groups Custom Case chity 2 Custom Custom Case chity 2 Custom	Options Main Modules General Desc Incomplete en Raise warning using I usi	s Scales/Units Profi riptors Selection Cca dipoint data warnings: ps when starting Gap fil MOA for mixture comp MOA for set of tautom MOA for set of metabol tion get chemical is out of the t the prediction by extern t the prediction by extern t the prediction regression / categorica the model vant profiles to the cui profiles a for target substance t data	ing Gap filing Repor ilculation Prediction ling in single component onents ers bites/transf. products ilculation products Do NOT ac al QSAR that has no do Do NOT ac so NOT so we use defaul and analogues will be s NOT co	ts mode and some of compo using SMC using SMC using SMC using SMC using SMC of analogues: ccept the prediction main: ccept the prediction still not saved: we the model elected (to appear in report It selection ollected from data matrix (t illect data	nents have no endpoint dat DA for mixture components DA for set of tautomers DA for set of metabolites/tra Ask to accept the preduce Ask to accept	ta, if: ansf. products ction	ng/kg re, Negative re re, Negat re, Negat	5 ^
			X Cancel	Restore defaul	tj		J	M: Inconclusive

In order to save model and export data for the analogues in Read-across analysis the user should set the specific options: 1. **Go** to Option; 2. **Open** Gap Filling panel; 3. **Open** Prediction and; 4. **Select** two radio buttons 3 and 5; 5. **Click** OK

Data Gap Filling (Ames without S9) Results of Read across

Data Gap Filling (Ames without S9) Interpreting Read-across

- The resulting plot outlines the experimental Ames results of all analogues (Y axis) according to a descriptor (X axis). Note, Log Kow is on the X-axis; while this descriptor is not significant to Ames data, it is the default descriptor for data gap filing (see next screen shot).
- The **RED** dot represents the predicted value for target chemical (see next screen shot).
- The **PURPLE** dots represent the observed value for the target neighbours(analogues) used for read-across (see next screen shot).
- The **BLUE** dots represent the experimental results available for the analogues but not used for read-across. (see next screen shot).
- Please note GREEN dots (which you will see shortly) represent analogues belonging to different subcategories.

Data Gap Filling (Ames without S9) Interpretation of the Read across

- Six of the analogues are mutagenic in the Ames assays without S9, the rest analogues are non-mutagenic
- Non-mutagenic potential (Negative) is, therefore, predicted with confidence for the target chemical.
- However, before data gap filling it is recommended to check the similarity of the analogues used in the prediction (see next screen shot). This is performed in order to assure the category consists of analogues that are both mechanistically and structurally similar.

QSAR TOOLEOX

Data Gap Filling (Ames without S9)

Subcategorization by DNA binding by OASIS (endpoint specific)

Data Gap Filling (Ames without S9)

Subcategorization by OFG (US-EPA)

QSAR TOOLEOX

Data Gap Filling (Ames without S9)

Subcategorization by OFG (US-EPA)

Data Gap Filling (Ames without S9) Interpretation of the Read across

Now all analogues are structurally similar (Aldehydes) and negative by the experimental data. The prediction could be accepted by **1. Click** on Accept prediction and If you want to save the model, and use it for further predictions, then

2. Click Yes and then 3. Edit the information about the model.

Data Gap Filling (Ames without S9) Interpretation of the Read across

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling (Ames without S9) Interpretation of the Read across

Data Gap Filling (Ames without S9) Results

- By accepting the prediction the data gap is filled.
- By clicking on "Return to Matrix", the user can close the read-across for the current endpoint and proceed with the workflow for the second endpoint, which in this case will be "Ames with S9" (see next screen shot).

Data Gap Filling (Ames without S9) Results

QSAR TOOLBOX	→ Input	Profiling	Endpoint	Category Definition	01010 01 1 10100 ▶ Data Gap Filling	► Report		⑤ 🥝 🚫 🔧 📳 About Update
Filing \$ Apply								The OECD QSAR Toolbox for Grouping Chemicals nto Categories Developed by LMC, Bulgaria
Data Gap Filling Method	Filter endp	point tree		1 [target]	2	3	4	5
◎ Read-across							2 ^m	
Trend analysis	Stru	ucture		C**	^{و بن} ام مر ا	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		СН:
Q)SAR models					\neg	cf, ∖⊆o	- S	ő
Target Endpoint		- Escherichia coli	(2/4)		2		M: Negative, Negative	
Human Health Hazards Genetic Toxicity In Vitro Bacterial Reverse Mutation Assay (e.g. Ames Test)		Salmonella typhim	urium	<u> </u>				
Gene Mutation Salmonella typhimurium With S9		-⊞No S9 Info	(81/81)		M: Negative	M: Negative	M: Negative	M: Negative
		-⊞With S9	(45/174)	M: Negative	M: Negative, Negat	. M: Negative, Negat	M: Negative, Negat	M: Negative, Negat
		-⊞Without S9	(49/188)	R: Negative	IVI: Ivegative, ivegat	. IVI: Ivegative, Ivegat	W: Negative, Negat	IVI: Negative, Negat
		Undefined Metal	oolic Activation					
		DNA Damage and Reparent	air Assay, Unsch		1			
		HEIDINA React. (Ashby Fra	igments) romosome (10/18)				M: Negative Negative	
		-⊞Mammalian Cell Gene	Mutation Assav(4/4)					
		ESister Chromatid Exch	ange Assay					
	_ 4	∃In Vivo	(6/12)					M: Inconclusive
		mmunotoxicity						
		rritation / Corrosion		•				
		Photoinduced Toxicity						
	-⊞R	Repeated Dose Toxicity						
	⊞s	Sensitisation	AOP					
		foxCast						
		oxicity to Reproduction	and Distribution	•				
	⊞Pro	file	and Distribution					
1. This is the pre	edict	tion for th	e first e	endpoint				1/0/0
2. This is the dat	ta qa	ap for the	second	I endpoii	nt.			

Outlook

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Chemical input
 - Profiling
 - Endpoint
 - Category definition
 - Data Gap Filling
 - Ames without S9
 - Ames with S9

Data Gap Filling (Ames with S9)

- We do this the same way as with Ames without S9.
- Make sure **Data Gap Filling** is highlighted.
- Highlight the **data endpoint box**; this time corresponding to **Ames with S9**. Again the box under the structure is empty.
- Select **Read across** and Click **Apply**.
- As before an insert window alerting you to **possible data inconsistencies** appears. Click **OK** (see next screen shot).

Data Gap Filling (Ames with S9) Apply read-across

		(+)	<u></u>	(—	01010		o o 😣 🔧 🖥
ųs		▶ Input	► Profiling	► Endpoint	Category Definition	> Data Gap Filling	Report	<u>A</u> bout <u>U</u> pdate
Apply	2							The OECD QSAR Toolbox for Grouping Chemicals into Categories
			1			16		Developed by LMC, Bulgaria
	Data Gap Filling Metho	Filter e	ndpoint tree		1 [target]		4	
0 Rea	ad-across					(H) (H)	Possible data inconsistency	
Tre	nd analysis		Structure		· · · · · · · · · · · · · · · · · · ·	^م مہ		CH:
(Q)	SAR models						TA 102 (1 points)	
	Target Endpoint							
Human H	ealth Hazards Genetic Toxicity In Vitro		- Escherichia coli	(2/4)			TA 1537 (22 points)	
Bacterial Gene Mut	Reverse Mutation Assay (e.g. Ames Test) tation Salmonella typhimurium With S9		Salmonella typhimu	irium		M: Negative		
				(81/81)	M: Negative	M: Negative Neg	IA 98 (47 points) ▲·Scale/Unit	Negat
				(45/174)	in. Hegative	M: Negative, Neg	Gene mutation I (174 points)	, Negat
			H±IVVithout S9		-	J / J		
			Undefined Metab	olic Activa Starti	ng gap filling			
			H±DNA Damage and Repa	ir Assay, (
			HEDNA React. (Asriby Fra	gments) (10/18)				
			HEIM white Manimalian Cell Gene M	Autation Assav(4/4)				
			-	inge Assav				
			 -⊞In Vivo	(6/12)				sive
			-Immunotoxicity					
			Elrritation / Corrosion					
		F	-Neurotoxicity					
			EPhotoinduced Toxicity					
			Hepeated Dose Toxicity	AOP			Selected [174/174] points	
			-ToxCast		•		Cancel	
			Toxicity to Reproduction		1	3		
			Toxicokinetics, Metabolism	and Distribution	1			
		ŒF	Profile					•
						_		- F
105 Alde	hyde (Organic Func 1. If	γοι	i have troi	ible re	view sli	de num	ber 68.	1/1/0

Data Gap Filling (Ames with S9) Results of Read across

QSAR TOOLBOX	P) put	FIJ Profiling	► Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report		ු ලා 😧 🔧 🔒
Filing \$								for Grouping Chemicals into Categories
								Developed by LMC, Bulgaria
Data Gap Filling Method				1 [target]	2	3	4	5
◎ Read-across							5m	
Trend analysis	. .				~~~ ⁶⁴⁴	~~ ^{CH} 1	Å	СН3
Q)SAR models	Structure			<i>1</i>	,	c+, ←_=	4	<i>.</i> –
Target Endpoint]			•	
Human Health Hazards Genetic Toxicity In Vitro		⊞With S9	(45/174)	M: Negative	M: Negative, Negat	M: Negative, Negat.	M: Negative, Negat.	M: Negative, Negat
Gene Mutation Salmonella typhimurium With S9	Descriptors Pr	ediction		A search and disting				
							Peturn to matrix	
			Keturn to mutrix					
	taking	the highest mode from Observed t	n the nearest 5 ne target value: 'Nega	ighbours, based on 23 v itive', Predicted target	alues from 5 neighbour value: 'Negative'	chemicals,	Select/filter data	
			Selection navigation					
	Positive	••••	+ Gap filling approach					
							+ Model/(0)SAR	
							Calculation options	
	('sc						Visual options	
	<u> </u>						Information	
	e Equivocal						Miscellaneous	
	Gene mut							
	Negative	• • • •		<u>o</u>	· · · · · · · · · · · · · · · · · · ·			
		0.00	1.00	2.00 log Kow	3.00	4.00		
	Descriptor X:	log Kow				•		
105 Aldehyde (Organic Functional groups)		Create pred	iction by gap filling		0/	1		1/1/0

Data Gap Filling (Ames with S9) Results of Read across

- As with Ames without S9, before accepting the estimated result for the target chemical, by read-across the user should refined the category by subcategorisation.
- Subcategorisation refers to the process of applying additional profilers to the previously defined category, identifying chemicals which have differing profiling results and eventually eliminating these chemicals from the category.
- In this example, we are going to use several different profilers to repeatedly subcategorise the data set.

Data Gap Filling (Ames with S9) Side Bar of Subcategorization

The analogues which are dissimilar to the target chemical with respect to:

- DNA binding alerts (endpoint specific) taking into account liver metabolism – The categorization based on this profiler identifies analogues having same DNA binding alerts as the target after metabolic activation
- Organic functional groups (US-EPA) The categorization based on this profiler identifies analogues having the same organic functional groups.

can be removed from the initial list of analogues previously defined by OFG.

Data Gap Filling (Ames with S9) Subcategorization by DNA alerts taking into account liver metabolism

- As with Ames without S9, we want to refined the category by subcategorisation with DNA binding by OASIS, taking into account liver metabolism
- Select Select/filter data
- Select **Subcategorize**
- Select **DNA binding alert**
- Select Rat Liver S9 metabolism simulator
- Look for dissimilar chemicals
- Click **Remove** to eliminate dissimilar chemical.

Data Gap Filling (Ames with S9)

Subcategorization by DNA binding alerts taking into account Rat liver metabolism

1. Select Select/Filter data 2. Click Subcategorize 3. Select DNA alerts for AMES by OASIS v.1.4 (endpoint specific) 4. Select Rat liver metabolism simulator. 5. Click

The OERCAROVOx for Grouping Chemicals into Categories

Data Gap Filling (Ames with S9) Subcategorization by OFG (US-EPA)

- As with Ames without S9, we want to refined the category by subcategorisation with OFG (US-EPA)
- Select Select/filter data
- Select **Subcategorize**
- Select Organic functional groups (US-EPA)
- Look for dissimilar chemicals
- Click **Remove** to eliminate dissimilar chemical.

Data Gap Filling (Ames with S9) Subcategorization by OFG (US-EPA)

Subcategorization										
Grouping methods Keratinocyte gene er Oncologic Primary Cla	Adjust options Target	FT ▶ Profiling	Endpoint)	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report		💿 💿 🛠 🔧 릚 <u>A</u> bout Update		
Protein binding alerts Protein binding alerts Respiratory sensitisat Retinoic Acid Recept rtER Expert System Olefinic carbon	atic attach [-CHO] [CH] [-CH2-] [-CH2-] lfide (=S) or oxide (=O) =CH- or =C<]							The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria		
Skin irritation/corrosic Differ from tarc	iet by:			1 [target]	2	3	4	5		
elements f elements ule Opric	category 500 Structu	ıre		Crs	^{c×1}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		СНа		
Organ Eunctional gr	Analogues			4	<i>8</i> —	chi 🛌o	2	0		
Organic functional gr Organic functional gr Organic functional gr Structural similarity	inic attach [-OH] aliphatic attach [-CHO] aromatic attach [-CHO] ben [C]	-⊞With S9	(39/145)	M: Negative	M: Negative, Negat	M: Negative, Negat.	M: Negative, Negat	. <mark>M: Negative, Negat</mark> _❤		
Tautomers unstable (29) Aliphatic Ca	arbon [CH]	Prediction					Accept prediction			
Toxicological (29) Aliphatic Ca Papagtad data (NES) (27) Aliphatic Ca	arbon [-CH2-]						Return to matrix			
Repeated dose (HES E Repeated dose (H	2/) Aromatic Carbon [C] Read across prediction of Gene mutation, 20) Aromatic Carbon [C] taking the highest mode from the nearest 5 neighbours, based on 20 values from 5 neighbour chemicals, 17) Carbony, olefinic attach [-C(=0)-] Observed target value: 'Negative', Predicted target value: 'Negative',									
 Custom (5) Chlorine, aro 	pmatic attach [-Cl] Pos	:itive 🕴					Mark chemicals by descrip	tor value		
Case study 2 (1) Diarylketone	minic attach [-Cl]						Filter points by test condit	ions		
- Case study 5 (3) Ester, alipha	tic attach $[-C(=0)0]$						Mark focused chemical			
(1) Escer, arona	bhatic attach [-OH]						Mark focused crienical			
Metabolism/Transformations (2) Hydroxy, arc	ring, olefinic aromatic attach						Mark rocused points	la cinta		
Do not account metaboli (38) Miscellaneo	us sulfide (=S) or oxide (=O)						Remove marked chemicals	points		
Observed Mammalian mer (38) Olefinic car	bon $[=CH- \text{ or }=C<]$	ocar					Clear existing marks			
Observed Microbial metal (1) Olefinic carb	on [=CH2]						Gap filling approach			
Observed Rat In vivo metal (2) Orthonyolo Observed Rat Liver S9, n = (1) Oxycarbonyl	compound [CCCOC-O-]						Descriptors/data			
Simulated (1) Oxygen, one	e aromatic attach [-O-]						Model/(Q)SAR			
Autoxidation simulator (11) Tertiary Ca	rbon						Calculation options			
Dissociation simulation	III Neg	ative 📘 🔶 🜔 🤃	>	<u>@-@p-@p-</u>	<u>· 🚥 · 🏟 · · 🏘 · · · · · (</u>	<u> </u>	Information			
Hydrolysis simulator (acidi Selected 29 (9	9/38) 3	0.00	1.00	2.00	3.00	4.00	Miscellaneous			
Hydrolysis simulator (basic	Select different			IOG KOW						
	Remove scriptor	X: log Kow				•				
1. Click on Do r	not account me	tabolism:	2. Sele	ct OFG (US-EPA)	: 3. Clic	k Remov	'e		

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling (Ames with S9) Result of read-across

Now all 5 analogues are structurally and mechanistically similar, then the prediction could be accepted or saved as a category (domain) in the custom profiler, which could be used further for screening purposes. This could be done by

- 1. Click on Model/(Q)SAR and then; 2. Click on Save domain as category
- 3. Since a custom profiler has previously been defined, highlight custom profiler and 4. Click OK.

Data Gap Filling (Ames with S9) Result of read-across

Data Gap Filling (Ames with S9) Result of read-across

Outlook

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Chemical input
 - Profiling
 - Endpoint
 - Category definition
 - Data Gap Filling
 - Report

Report Overview

- Report module could generate report on any of predictions performed with the Toolbox.
- Report module contains predefined report templates as well as a template editor with which users can define their own user defined templates.
- The report can then be printed or saved in different formats. (see next screen shot).

Report Generate Report

The OECD QSAR Toolbox for Grouping Chemicals into Categories

15.07.2016

Outlook

- Background
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc, on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

Open saved file

Open saved file

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Congratulation

- By now you should feel comfortable with the six basic modules of the toolbox and how they form the work flow of the Toolbox.
- In this tutorial you have now been introduced to several additional function in the Toolbox, especially using different profilers in subcategorizing the category of the target chemical.
- Remember proficiency in using the Toolbox will only come with practice.