QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Step-by-step example of how to predict acute aquatic toxicity to Tetrahymena pyriformis by trend analysis using category pruning capabilities

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
- Save the prediction result

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox in a data-gap filling exercise using trend analysis based on a category formed with data pruning.
- If you are a novice user of the Toolbox you will want to review the "Getting Started" document available at [http://www.oecd.org/chemicalsafety/riskassessment/TB3%200 GettingStarted rev2.pdf] as well as go through tutorials 1 - 3.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
- Save the prediction result

Objectives

- This presentation demonstrates a number of functionalities of the Toolbox :
 - Entering a target chemical by SMILES notation and Profiling
 - Identifying analogues for a target chemical by molecular similarity
 - Retrieving experimental results available for those analogues, and for multiple endpoints
 - Filling data gaps by trend analysis

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
- Save the prediction result

Specific Aims

- To reacquaint the user with the workflow and the six modules of the Toolbox.
- To reacquaint the user with the basic functionalities within each module.
- To introduce the user to new functionalities of selected modules.
- To explain to the rationale behind each step of the exercise.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
- Save the prediction result

Trend analysis

- For a given (eco)toxicological endpoint, the members of a category are often related by a trend (e.g., increasing, decreasing or constant) in potency.
- The trend could be related to molecular mass, carbon chain length, or to some other property.
- A demonstration of consistent trends in the toxicity of a group of chemicals is one of the desirable attributes of a chemical category and one of the indicators a common mechanism of action for all chemicals in the category.
- When some chemicals in a category have measured values and a consistent trend is observed, missing values can be estimated by simple scaling from the measured values to fill in the data gaps.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
- Save the prediction result

The Exercise

- In this exercise we will predict the toxicity towards the *Tetrahymena pyriformis,* of the substance, 4-Methylhexanal [CAS# 41065-97-8], which will be the "target" chemical.
- This prediction will be accomplished by collecting experimental results for a set of chemicals considered to be in the same category as the target molecule.
- The category will initially be defined based on a protein binding mechanism.
- The initial category will be pruned via subcategorisation.
- Trend-analysis will be used for data gap filling.

Side-Bar On Tetrahymena

Tetrahymena pyriformis is a free-living ciliated protozoan that is found in fresh-water ecosystems throughout the world.

It is a well-studied genus with understood nutrient requirements, growth characteristics, and cell biology and genomics.

The ability to culture it axenically in simple media, coupled with its rapid doubling time of makes it a good test organism.

Strain GL-C is amicronuclated and thereby genetically extremely stable.

Side-Bar On TETRATOX

Population growth impairment testing with *Tetrahymena pyriformis* is conducted in a static assay uses population density quantified spectrophotometrically as its endpoint.

The endpoint 50% inhibitory growth concentration from this assay is one of the largest aquatic toxicity databases in the Toolbox.

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
- Save the prediction result

Workflow

- By now you should be familiar with the six modules which are used in a sequential workflow within the Toolbox. These are:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
 - Chemical Input

Chemical Input Overview

- This module provides the user with several ways of entering the target chemical into the Toolbox.
- This is important because all subsequent functions are based on chemical structure.
- The goal of this module is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases
- Chemical IDs such as EC number, Einecs number

B.Group of chemicals

- User List/Inventory
- Specialized Databases

Chemical Input

- Turn on the computer and open the Toolbox. This will take some time as the databases will be populated.
- Note that the Toolbox opens to the first Module "Input" (see next screen shot).
- Since we have described this modules in the earlier tutorials, we will go through it rapidly.

Chemical Input Screen Input target chemical by CAS#

QSAR TOOLBOX	→ F Input	► ► Profiling	► Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	▶ Report
Document 1 Image: Second se	# 10 CAS# <u>N</u> ame	Single Chemical	I X ↓ Qelete Query	ChemIDs DB	Chemical List	
Documents Document_1	Filter endpoint to Structure Benvironn Ecotoxice Human h	ce Identity Ce Identity I Chemical Properties nental Fate and Transpo cological Information Health Hazards	rt			
1 . Click on CAS	S# and	a dropdow	ın box w	vill appear	(see next	screen shot)

Chemical Input Screen Enter CAS# 41065-97-8 of 4-Methyhexanal

1. **Type** the CAS# In the field; 2. **Click** Search button; 3. **Press** OK

Chemical Input Target chemical identity

The Toolbox searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2D image.

🥘 Search I	by CAS #							×	
41065-97-8 Tautomeric sets Search									
Select All Clear All Invert Selection Selected 1 of 1									
Selected	CAS	Smiles	Depiction		Names	CAS/Name	2D/Name	CAS/2D	
1. Yes	41065-97	ccc(c)c	,	∕—сн₃ сн₃	1:	1:: Low (1:: M	1:: Low (1:: M	: Low ·	

In case a structure has several CAS numbers or a structure could be related to more than one substance more than one chemical identity could be retrieved. In this case the user can decide which substance is to be retained for the subsequent workflow.

Chemical Input Target chemical identity

- Double left click "Substance Identity"; this displays the chemical identification information (see next screen shot).
- Note that existing in the Toolbox names of target chemical are in different colours.
- The workflow on the first module is now completed, and the user can proceed to the next module (see next screen shot).

Chemical Input Target chemical identity

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow
 - Chemical Input
 - Profiling

Profiling Overview

- As in the other tutorials, "Profiling" refers to the electronic process of retrieving relevant information on the target compound stored in the Toolbox database, other than fate and toxicity data.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Side-Bar to Profiling

Summary information of the different profilers is provided in the "About".

- Click in the box next to the Profiling methods related to the target endpoint
- This selects (a green check mark appears) or deselects (green check mark disappears) profilers
- For this example check all the mechanistic methods.

			A		01010				5 🕲 🔕 🔧 🗒
QSAR TOOL 2			U		10100				<u>A</u> bout <u>U</u> pdate
Apply New Yew Delete	, Tubnt	Profiling	▶ Enapoint	Category Derinition	• Data Gap Filling	• кероп			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Profiling methods		Filter endpoint tree			1 [target]]			
Select All Unselect All Invert Predefined General Herianistic General Herianistic General Merianistic General Merianistic General Merianistic General Merianistic General Merianistic Geodeg probability (Blowin 1) Giodeg probability (Blowin 2) Geodeg probability (Blowin 5) Biodeg probability (Blowin 6) Geodeg probability (Blowin 7) Giodeg probability (Blowin 7) Goodeg probability (Blowin 7) Giodeg probability (Blowin 7) Giodeg probability (Blowin 7) Giodeg probability (Blowin 7) Giodeg probability (Blowin 3) DNA binding by OASIS v.1.4 DNA binding by OASIS v.1.4 DNA binding by Alf-fife (Ab, pH 3)(Hydrowin) Hydrolysis half-fife (Ab, pH 7)(Hydrowin) Hydrolysis half-fife (Ab, 5.57.4) Ionization at pH = 1	About 1 (tension) iginal)	Structure Structure CAS Nur Chemica Chemica Molecula Structura Physical C Environmer Ecotoxicolo Human Hea	Identity nber I IDs I Name I Formula II Formula hemical Properties atal Fate and Transp ogical Information alth Hazards	port	41065-97-8 NA hexanal, 4-methyl- C7H140 CCC(C)CCC=0				
Metabolism/Transformatic Select All Unselect All Invert	1. Che	ck all	the Ge	eneral Me	echanisti	c profil	ers; 2. Click	Apply	

- The actual profiling will take several seconds depending on the number and type of profilers selected.
- The results of profiling automatically appear as a dropdown box under the target chemical (see next slide)
- Please note the specific protein-binding profiler Protein binding by OASIS v1.4 - background information can be retrieved by double click on the box with Protein binding by OASIS v1.4 result (see next slide)
- This result will be used to search for suitable analogues in the next steps of the exercise.
- Move to next module "Endpoint".

					01010				۵ 🙆 🔊
QSAR TOOLBOX			U		10100				<u>A</u> bout <u>U</u> pdate
,, ,, ,, ,, ,, ,, ,	Input	Profiling	Endpoint	Category Definition	Data Gap Filling	Report			
Profiling Profiling Schemes									The OECD QSAR Toolbox for Grouping Chemicals into Categories
<u>A</u> pply <u>N</u> ew <u>V</u> iew <u>D</u> elete									Developed by LMC, Bulgaria
Profiling methods		Filter endpoint tree			1 [target]				^
Select All Unselect All Invert Predefined General Hechanistic Giodeg Dirobability (Biowin 1) Giodeg probability (Biowin 2) Giodeg probability (Biowin 5) Giodeg probability (Biowin 5) Giodeg probability (Biowin 6) Giodeg probability (Biowin 7) Giodeg probability (Biowin 6) Giodeg probability (Biowin 7) Giodeg probability (Biowin 6) Giodeg probability (Biowin 6) Giodeg probability (Biowin 6) Giodeg probability (Biowin 7) Giodeg probability (Biowin 7) Giodeg probability (Biowin 6) Giodeg probability (Biowin 7) Giodeg probability (Biowin	About	Structure	inding by OECD Cysteine peptide deplet en Receptor Binding ysis half-life (Ka, pH 7) ysis half-life (Ka, pH 7) ysis half-life (Kb, pH 7) ysis half-life (Kb, pH 8) ysis half-life (Kb, pH 8) ysis half-life (Kb, pH 8) ysis half-life (PH 6.5-7.4 ion at pH = 1 ion at pH = 1 ion at pH = 7.4 ion at pH = 9 h binding by OASIS v1.	Profiling result Chemical profile Protein bind Schiff bi Schiff b	Its Ing by OASIS v1.4 ase formation >> Schiff ba ase formation >> Schiff ba ase formation >> Schiff ba ase formation >> Schiff ba From Carcunated Acidic [0,10) Basic [0,10) Acidic [0,10] Basic [0,10] Acidic [0,10]	se formation with carb se formation with carb	2 conyl compounds ponyl compounds >> Aldehydes		
Dissociation simulation					Schiff Base Forme				
Hydrolysis simulator (acidic)		Protein	h binding potency		Not possible to cla	l			
Hydrolysis simulator (ubla	click o	n Drota	in hindi	ng hy	ACIC	profiling	rocult	, v
1. DO	uble	CHCK C	rote		ng by t	JASIS	proming	lesuit	
	ck Do	tails +	a caa th	o ovola	nation	of Ald	obydoc	atogony	
		italis t	o see th	e expla	induon		enyues (aleguiy	

Profiling Profiling results – Explain

Protein binding by OASIS v1.4		-	ð ×	
	Aldehydes			
Target	Boundaries Training set Options			
CH-CHs CH-CHs CH-CHs				
و معرف معرف المعرفة الم Target	Boundary Options Metabolism Fragment		Edit	
	Image: RP2 - X Definition Options 1 Tenumeration* 2 Image: RP2 - Image: RP2 -			
	Common Fragments			
	$1 \qquad Herr \qquad 1 \qquad 2$		^ _	
	Masked Fragments			2

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

• Workflow

- Chemical Input
- Profiling
- Endpoints

Endpoints Overview

- As you may remember, "Endpoints" refer to the electronic process of retrieving the measured data for fate and toxicity that are stored in the Toolbox database.
- Data gathering can be executed in a global fashion (i.e., collecting all data of all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).

Endpoints Case study

- We will gather data for acute aquatic toxicity endpoints
- For this purpose, data are collected from all Ecotox
- Click on "Select All" from Ecotoxicological part
- Click on "Gather data" (see next screen shot).

Endpoints Gather data

Endpoints Case study

- Aquatic Toxicity information on the target chemical is electronically collected from the selected dataset(s).
- In this example, an insert window appears stating there was "no data found" for the target chemical .
- Close the insert window by right clicking on "OK".

Endpoints Recap

- The workflow in this exercise is the same as you have observed with the preceding tutorials.
- You have entered the target chemical being sure of the correct structure.
- You have profiled the target chemical.
- You have found that no experimental data is currently available for this structure.
- In other words, you have identified a data gap, which you would like to fill.
- Proceed by right clicking on "Category definition" which move you to the next module.

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

• Workflow

- Chemical Input
- Profiling
- Endpoint
- Category definition

Category Definition Overview

- As before, this module provides the user with several means of grouping chemicals into a category that includes the target molecule.
- Remember this is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition. We will using several of these options in this tutorial.

Category Definition Grouping methods

- You may want to review the information about grouping chemicals which is in (Chapter 4) on the following link. <u>http://www.oecd.org/dataoecd/58/56/46210452.pdf</u>
- Re-examine slide 31-32; you see that the target chemical (4-Methyl hexanal) could react with proteins via Schiff base formation and thus it has a potential for exhibiting aquatic toxicity in excess of baseline potency.
- The reaction by which a target chemical binds with proteins is relevant to deriving a group of chemicals that may mechanistically act the same way to elicit aquatic toxicity.

Category Definition

Protein binding by OASIS v1.4 grouping method

- Protein binding is one of the best grouping methods in the Toolbox. It is based on conventional organic chemical mechanisms and reactions, and as such is qualitative in character.
- This grouping method is particularly relevant for respiratory and skin sensitization and acute aquatic toxicity, but also relevant to chromosomal aberration and acute inhalation toxicity.

Category Definition Side bar to Protein binding by OASIS v1.4 grouping method

- Protein binding by OASIS v1.4 includes 617 chemical categories.
- Each category is represented by defined 2-dimentional structural alerts that are associated with chemicals that act as electrophiles and covalently react with various moieties, in particular thiol (-SH) and amino (-NH₂) groups in proteins.
- Therefore, there is a sound mechanistic basis for using this grouping method.

Category Definition Defining Protein binding by OASIS v1.4 category

Category Definition Defining Protein binding by OASIS v1.4 category

Category Definition Analogues

- The data is automatically collected.
- Based on the defined category (Schiff base formation<AND>Schiff base formation >> Schiff base formation with carbonyl compounds<AND>Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldehydes) 174 analogues* (plus the target chemical) have been identified.
- These 174 compounds along with the target chemical form a category, which can be used for data filling (see next screen shot).

• The name of the category appears in the "Defined Categories" window, indicating the number of substances belonging to the category.

Category Definition Read data for Analogues

- The Toolbox automatically request the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

Category Definition Read data for Analogues

Due to the overlap between the Toolbox databases same data for intersecting chemicals could be found simultaneously in more than one databases. The data redundancy is identified and the user has the opportunity to select either a single data value or all data values.

Repeated values for	: 2569 data-points, 911	groups, 681 chemicals			_	
Data points						
	Endpoint	CAS	Structure	Value	Abnormality	Select one
		90-02-8	~~~~	-7 ℃	1 (
		90-02-8	Ø	-7 ℃		Invert
		123-15-9	CH2	-100 °C		Check All
		123-15-9		-100 °C		Unchock All
		123-15-9		-100 °C		Undriedk All
		104-55-2	<u> </u>	-7.5 ℃		
		104-55-2	\odot	-7.5 ℃	27	🗸 ок
		89-98-5	8	10;12 °C		X Cancel
<					>	

1. Click Select one and then 2. Click OK

Category Definition Read data for Analogues

The system automatically gives indication for the number of gather experimental data points

Category Definition Summary information for Analogues

• The experimental results for the analogues are inserted into the data matrix.

Category Definition Side bar of experimental data

QSAR TOOLE	ox	(+) ► Input	F ► Profiling	► Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	j	Report				ලි ලි 🙆 😒 <u>A</u> bout Updat	æ
مع المعالي Define Define with metabolis	Categorize X m <u>S</u> ubcatego	eitze <u>C</u> ombine	ිනී Cļustering	Delete								The OECD QSAR To for Grouping Chem into Categories Developed by LMC	ool hica 2, Bi
DNA binding by OASIS v. 1. DNA binding by OECD DRA Cysteine peptide dep DRA Lysine peptide deple Estrogen Receptor Binding Hydrolysis halfrife (Ka, pH	Grouping 4 ketion tion 7)(Hydrowin)	g methods		Filter endpoir Struct	it tree			1 [target]] 2] 4 وم ⁵⁴	5 cr, Co	6
Hydrolysis half-life (Ka, pH Hydrolysis half-life (Kb, pH Hydrolysis half-life (Kb, pH Hydrolysis half-life (PH 6.5- Ionitation at hH = 1	8 💽 Data poir 7 8 [#] 7	nts Endpoint	Value	Original value	Effect	- D >	× ^						
Initiation at pH = 4 Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 Protein binding by OASIS v Protein binding by OASIS v Protein binding potency Superfragments Toxic hazard classification b	1	LC50	12 mg/L	0.000105 moVL	Mortality				M: 17.8 mg/L, 9.79 M: 38 milliliters per	M: 59.4 mg/L, >10	V M: 12 mg/L, 8.86 M: 148 mg/L	M: 30.1 mg/L, 88.7	N
Toxic hazard classification b Ultimate biodeg Endpoint Specific Acute aquatic toxicity class	2 3 4	LC50 IGC50 pT	8.86 mg/L 114 mg/L 16.5 mg/L	7.76E-5 moVL 0.001 moVL 0.000145 moVL 12 moV	Mortality Growth Physiology	2 (raliable with							
Acute aquatic toxicity MOA Aquatic toxicity classificatio Bioaccumulation - metabolis Bioaccumulation - metabolis	6 r < n Transpose	FC50	4 99 mn/l	4 99 ma/l	mobility	1 (reliable without	>						
Diodegradation fragments (Carcinogenicity (genotox al DART scheme v. 1.0 DNA alerts for AMES by OA DNA alerts for CA and MNT Eye irritation/corrosion Exc	SIS v. 1.4 by OASIS v. 1.1 by OASIS v. 1.1	alerts by ISS		~									
 Document_5 [174] Schiff base formation 	Defined (<and>Schiff bas</and>	Categories se formation >> Sch	niff base formation with	i carbonyl co									

1. Double-click on the cell with measured data to see detailed information.

Category Definition Recap

- You have identified a mechanistic category by Protein binding by OASIS v1.4 for the target chemical (4-Methy hexanal).
- The available experimental results for these 174 analogues are collected from the previously selected databases.
- The user can then proceed to the module "Data gap filling", but before that the user should navigate through the endpoint tree and find the gap that will be filled in.

Category Definition Navigation throw the endpoint tree

- You can proceed to the module "Data gap filling", but before that we will navigate through the endpoint tree and find the gap that will be filled.
- As before we navigate through the data tree by closing or opening the nodes of the tree.
- In this example, the IGC50-48h Growth for *Tetrahymena pyriformis* is the target endpoint (see next screen shot).

Category Definition Navigation throw the endpoint tree

QSAR TOOLBOX) Input	Figure Profiling	Endpoint	Category Definition	01010 01 1 10100 • Data Gap Filling	► Report				5 <u>A</u> bout	🖻 🛞 🔧 t <u>U</u> pdate
Categorize	e <u>C</u> ombine	ි Cļustering D	Delete Delete Operation Delete Delete Delete							The OECD (for Groupin into Catego Developed I	QSAR Toolbo Ig Chemicals pries by LMC, Bul
Grouping methods		Filter endpoint tree			1 [target]	2	3	4	5	6	7
DNA binding by OASIS v. 1.4 DNA binding by OECD DPRA Cysteine peptide depletion DPRA Lysine peptide depletion Estrogen Receptor Binding Hydrolysis half-Affe (Ka, pH 7)(Hydrowin)	^	Structure			er.	g	Ő	en cura	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	снэ 0	6
Hydrolysis half-life (Ka, pH 8)(Hydrowin)		- ECell Prolife	eration Inhibition	(1/1)							
Hydrolysis half-life (Kb, pH 8)(Hydrowin)		-⊞Cell Yield		(1/4)							
Hydrolysis half-life (pH 6.5-7.4)		–⊞Cell(s)		(1/8)							
Ionization at pH = 1		- Developme	ent	(13/40)							
Ionization at $pH = 7.4$		- Dissolved	Oxygen Production	(1/1)							
Ionization at pH = 9		-⊞Effect		(1/1)							
Protein binding by OASIS v1.4		-⊞Enzyme(s		(4/18)							
Protein binding by OECD		-⊞F_eding B	ehavior	(1/1)							
Superfragments	_	- Gas Produ	Iction	(1/2)							
Toxic hazard classification by Cramer		#Genetics		(3/10)							
Toxic hazard classification by Cramer		Growth		(0,10)							
- Ultimate biodeg				(0/21)							M: 26 r
Acute aquatic toxicity classification by Verhaar	(Modified)			(5/21)							101. 201
Acute aquatic toxicity MOA by OASIS											
Aquatic toxicity classification by ECOSAR											
Bioaccumulation - metabolism alerts		4=148 h									
Biodecrandation fragments (BioWIN MITT)			tozoa								
Carcinogenicity (genotox and nongenotox) aler	rts by ISS		iliophora								
DART scheme v.1.0			Ciliatea								
DNA alerts for AMES by OASIS v. 1.4			 Tetrahymena pyrifon 	mis (68/68)		M: 152 mg/L	M: 59.4 mg/L	M: 114 mg/L	M: 88.7 mg/L	M: 194 mg/L	
DIVA alerts for CA and MINT by OASIS V.1.1	>	- ELOEC		(4/8)							
Defined Categories		−⊞LOEL		(1/6)							
Document 5		-EMATC		(3/4							
											🗖 M: 4.7 r

1. **Double click** on the specific nodes to reach the leaf of the target endpoint – Ecotoxicological information; Aquatic toxicity; Growth; IGC50; 48h; Protozoa; Ciliophora; Ciliatea; Tetrahymena pyriformis.

Category Definition Navigation throw the endpoint tree with the filter box

 Remember you can also navigate through the endpoint tree by typing the endpoint of choice in the filter box and then double clicking through the endpoint tree to IGC50-48h Growth for *Tetrahymena pyriformis* (see next screen shot).

Category Definition Navigation through the endpoint tree - use filter

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

• Workflow

- Chemical Input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling

Data Gap Filling Overview

- "Data Gap Filling" module give access to three different data gap filling tools:
 - Read-across
 - Trend analysis
 - (Q)SAR models
- Depending on the situation, the most relevant data gap mechanism should be chosen, taking into account the following considerations:
 - Read-across is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitization or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal). Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
 - Trend analysis is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 - (Q)SAR models can be used to fill a data gap if no adequate analogues are found for a target chemical.

In our case trend analysis is applied

Data Gap Filling Data Gap window

1. Click on Data gap filling.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

15.07.2016

Data Gap Filling Apply Trend analysis

Data Gap Filling Interpreting Trend analysis

- The resulting plot outlines the experimental IGC50 results of all analogues (Y axis) according to a descriptor (X axis) with Log Kow being the default descriptor (see next screen shot).
- The **RED** dot represents the estimated result for the target chemical.
- The **BLUE** dots represent the experimental results available for the other analogues.
- The **GREEN** dots (which we will see later) represent analogues belonging to different subcategories.
- Before accepting the estimated result for the target chemical, the trend analysis should be further refined by subcategorisation.

Data Gap Filling Results of Trend analysis

Data Gap Filling Side Bar of Subcategorization

- Subcategorisation refers to the process of applying additional profilers to a previously defined category.
- The goal here is to identify chemicals which have differing profiling results, eliminating these chemicals from the category, and eventually getting a more homogenous chemical category.
- In this example, two subcategorisations are applied to prune the analogues.

Data Gap Filling Subcategorization

- Due to polyfunctionality of molecules, there are analogues which may undergo protein binding reactions different from those of the target compound.
- In addition, there are analogues which contain organic functional group that differ from those of the target compound.
- These analogues can be identified and later removed via subcategorisation.

Data Gap Filling Subcategorization 1 (Protein binding by OECD)

1. Open Select/filter data; 2. **Select** Subcategorize; 3. From Grouping methods **select** Protein binding by OECD. The green dots which represent analogues belonging to different subcategories.

Data Gap Filling Information on an Analogue

- Additional information may be observed for any analogue in the trend analysis.
- Analogues which are different from the target chemical may be removed from the category.
- In this example, we will examine the upper most data point (see the next series of screen shot).

Data Gap Filling Subcategorization 1 (Protein binding by OECD)

1. Subcategorization 2. **Select** Protein binding by OECD 3. **Remove** analogues which have different protein binding mechanism than the target chemical.

Data Gap Filling Subcategorization 1 (Protein binding by OECD)

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Selecting the Data Type

- The Toolbox allows the user to decide which type of data to be used in cases where more than one result are available for any analogue.
- This can be all values, average values, minimum or maximum results (see next screen shot).
- It should be noted that averaging results is only useful for quantitative endpoints, which is the case in this example.

Data Gap Filling Selecting the Data Type

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Selecting the Data Points

Data Gap Filling Subcategorization 2 (Organic functional groups (nested))

Data Gap Filling

Subcategorization 2 (Organic functional groups (nested))

756 Schiff base formation < AND > Schiff base formation >> Schiff base formation with carbonyl compo Create prediction by gap filling

Data Gap Filling Accepting the prediction result

QSAR TOOLBOX			😏 🕲 😵 🔧 🚪 About Update
→ Input	Profiling Fndpoint	Category Definition Data Gap Filling Report	The OFCD OSAR Toolbox
filler g			for Grouping Chemicals into Categories
Apply			Developed by LMC, Bulgaria
Data Gap Filling Method Read-across O Trend analysis (Q)SAR models	Structure	1 [target] 3	
Target Endpoint Ecotoxicological Information Aquatic Toxicity Growth IGC50 48 h	Tetrahymena pyriformis	: (14/14) M: 152 mg/L	M: 114 mg/L M: 88.7 mg/L M: 194 mg/L 3 mg/L M v
Protozoa Ciliophora Ciliatea Tetrahymena pyriformis	Descriptors Prediction Adequacy Cumul. fre	eq. Statistics Residuals	Accept prediction
	making	Trend analysis prediction of IGC50, a linear approximation, based on 14 values from 14 analogue chemicals Observed target value: N/A, Predicted target value: 696 mg/L, Model equation: IGC50 = +1.93 +0.577 * log Kow	 Select/filter data Select/filter data Selection navigation Gap filing approach Descriptors/data Hodel/(Q)SAR Calculation options Visual options Information Miscellaneous

1. Select Accept prediction and 2. Click Return to matrix.

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise

• Workflow

- Chemical Input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling
- Reporting

Report Overview

- Remember, the report module generates reports on any of predictions made with the Toolbox.
- The report module contains predefined report templates as well as a template editor with which users can define their own "user defined" templates.
- The report can then be printed or saved in different formats.

Report Generate Report

Report Generate Report

QSAR TOOLEOX	Input ▶ Profiling ▶ Endpo	int → Category Definition → Data Gap Filling → Report	🅤 😁 😒 🔧 🔛 About Update
Reports Reports <th< th=""><th>Repository</th><th></th><th>The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria</th></th<>	Repository		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Available data to report Predictions (Q)SARs Categories Available report templates Standard (predefined) QSAR Toolbox Category Report (CCRF v.3.4) QSAR Toolbox Category Report (CCRF v.3.4) QSAR Toolbox Prediction Report (TRF v.3.4) Custom (user defined) Editable copy of QSAR Toolbox Category Report (Editable copy of QSAR Toolbox Prediction Report to Editable co	QMRF v.3 (CCRF v. t (TPRF v.	Prediction of IGC50 for hexanal, 4-methyl-	^^
<		The template of the current report is based on "GUIDANCE DOCUM VALIDATION OF (QUANTITATIVE) STRUCTURE-ACTIVITY RELATIONSI published by OECD (September, 2007) and "GUIDANCE ON INFORMAT REQUIREMENTS AND CHEMICAL SAFETY ASSESSMENT / CHAPTER R.6 GROUPING OF CHEMICALS" published by ECHA (May, 2008). The report provides information about the target substance, chemica used for the grouping, the resulting boundaries of the group of chemicat domain), the type of data gap filling approach that was applied (read-a analysis or QSAR models), the predicted result(s) and in the Annex info the category members or training set and test set chemicals.	ENT ON THE IIPS MODELS" ION : QSARS AND al characteristics Is (applicability cross, trend rrmation about

Outlook

- Background
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow

Save the prediction result

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc, on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

1. **Go** to Input section 2.**Click** on Save button 3. **Define** name of the file; 4. **Click** Save button

Open saved file

Open saved file

1. The file is opened successfully 1. **Click** OK

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Congratulation

- By now you should feel comfortable with the six basic modules of the toolbox and how they form the workflow of the Toolbox.
- In this tutorial you have been introduced to several additional function in the Toolbox.
- You have used different profilers in subcategorizing the initial category of the target chemical.
- Remember proficiency in using the Toolbox comes with practice.