QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.3.4

Step-by-step example of how to build a category for more than one target chemicals and predict acute toxicity to fish

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2

Background

 This is a step-by-step presentation designed to take you through the workflow of the Toolbox for evaluating an ad-hoc analogue approach.

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox for evaluating an ad-hoc analogue approach.
- By now you are experienced in using the Toolbox so there will be multiple key strokes between screen shots.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2

Objectives

• To demonstrate how to use the Toolbox to evaluate whether a data gap filling with read-across from potential analogues of target chemicals is robust.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2

Specific Aims

- To examine the workflow of evaluating an analogue approach.
- To introduce the user to new functionalities within selected modules.
- To explain the rationale behind each step of the exercises.
- To demonstrate with two practical examples how to use the Toolbox to evaluate whether a read-across from a potential analogue to a target chemical is robust.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2

Exercise

- In this exercise we will perform two examples of ad-hoc read-across for acute toxicity to fish.
- We will do this by first entering the source and target chemicals and analysing the available data for the source chemicals.
- We will then profile the source and target chemicals and evaluate whether the read-across is robust.

Exercise

Side-Bar on the Robustness of a Potential Analogue

- According to the OECD Guidance on Grouping of Chemicals, the following issues should be taken into account when evaluating the robustness of an analogue approach:
 - Quality of the experimental result of the source chemical
 - Differences in functionalities in the molecules of the source and target compound (*)
 - Purity and impurity profiles
 - Differences in physical chemical properties
 - Differences in experimental results for other (eco)toxicological endpoints
 - Differences in mode of action (*)
 - Differences in toxicokinetics
- Some of the issues above (those marked with an *) will be addressed in the current examples with the help of the Toolbox.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2

Workflow of the Exercise 1

- As you know the Toolbox has 6 modules which are typically used in sequence:
 - Chemical Input
 - Profiling
 - Endpoint
 - Category Definition
 - Data Gap Filling
 - Report

• In this example we will use the modules in a different order, tailored to the aims of the example.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
 - Chemical Input
 - Profiling
 - Endpoint

Chemical Input Overview

- As you know this module provides the user with several means of entering the chemical of interest or the target chemical.
- It is essential to remember that since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

- Remember there are several ways to enter a target chemical and the most often used are:
 - •CAS#,
 - SMILES (simplified molecular information line entry system) notation, and
 - Drawing the structure.

Chemical Input Exercise 1

Read-across of acute toxicity to fish from 1-hepatanal 1hexanal and to 3-ethyl-1-pentanal.

- In this example, we are entering the structure using the SMILES notation.
- Click on Structure, then
- Enter CCCCCC=0 for n-heptanal on "SMILES/InChi" window.
- The structure is drawn simultaneously while entering the SMILES (see next screen shot).

Chemical Input Target chemical identity

The Toolbox now searches the Toolbox databases and inventories for the presence of the chemical with structure related to the current SMILES notation. It is displayed as a 2D image.

2D Editor	2ТНАА 🖉 Single	 ★ 6 	- □ - × → × → × → × → × → × → × → × → × → ×
SMILES/InChi CCCCCCC=	:0		Draw Mixture
Iemplates Work		_	
● ≢ 🖬			
-\overlaphi_e-	34 <u>−</u> 4 34 <u>−</u> 4		СНЗ
ţţ.)=={ 		СН2_СН2 СН2_СН2
H.			CH—_CH2 0∕∕
	~°~		
			oasis-Imc.org
drag the mouse with left	button pressed to create b	ond	
		🗸 ОК	X Cancel

In this case Toolbox found two chemicals answering the required SMILES. This panel displays QA information for presented chemicals. The user can decide which substance is to be retained for the subsequent workflow.

- The Toolbox now consults its chemical ID database and finds all chemicals with the structure CCCCCC=O.
- The Toolbox finds three chemicals with the same structure for 1-heptanal but with different CAS numbers and chemical names. Therefore, the Toolbox find two chemicals with different QA relations (CAS-Name; 2D – Name; CAS-2D (see next screen shot).

 The Toolbox finds two chemicals with the same structure and with different QA relations (CAS-Name; 2D – Name; CAS-2D).

C	Select chemicals										
(Select All Clear All Invert Selection Selected 2 of 2										
	Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS 🔺			
	1. Yes	111-71-7	CCCCCC	CH3	1: 2: 3: 4:	1:: Low (1:: A 2:: Es 3:: U 2:: Low (1:: Ba 2:: G 3:: U	1:: Low (1:: U: 2:: A(3:: Es 2:: Low (1:: U: 2:: G(3:: Bz	: Hi			
•	2. Yes	70955-11	cccccc	CH3	1:	1:: High 1:: Ci 2:: D: 3:: E(4:: HI	1:: Low (: Lc			
	Note: The last 3 columns represent the chemical identification relations: CAS/Name, 2D/Name, and CAS/2D.										

Select o	Select chemicals Select All Clear All Invert Selection Selected 2 of 2									
Selected CAS Smiles Depiction Names CAS/Name 2D/Name CAS										
1. Yes	111-71-7	cccccc	CH3	1: 2: 3: 4:	1:: Low (1:: A 2:: Es 3:: U 2:: Low (1:: Ba 2:: G 3:: U	1:: Low (1:: U: 2:: A 3:: Es 2:: Low (1:: U: 2:: G 3:: Bz	: ні			
2. Yes	70955-11	cccccc	CH3	1:	1:: High 1:: Ci 2:: D: 3:: EC 4:: HI	1:: Low (A 1:: T: A 2:: E(3:: Ci A 4:: D:	: Lc			
	Tautomeric sets Search									

•The columns represent chemical relations

•The colors represent the quality of relation

Text Color	Evaluated Q
Black	N/A Quality
Red	Low Q
Orange	Moderate Q
Green	High Q
Blue	Conflict

Clear All	Invert Selectio	n Selected 2 of 2				
CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D
111-71-7	CCCCCCC=0	снз 0	1: hepti 2: n-he 3: hepti 4: hepti	1:: Low Quality 1:: Aquatic OAS 2:: Estrogen Re 3:: USER DEFIN 2:: Low Quality 1:: Bacterial mu 2:: Genotoxicity 3:: USER DEFIN	1:: Low Quality 1:: USER D 2:: Aquatic 3:: Estroge 2:: Low Quality 1:: USER D 2:: Genotor 3:: Bacteriz	: High Qualit 1:: A 2:: B 3:: C 4:: D 5:: E A 6:: E A 7: F
70955-11-2	ccccccc=0	CHs	1: hexe	I:: High Quality 1:: Canada DSL 2:: DSSTOX 3:: ECHA PR 4:: HPVC OFCD	1:: Low Quality A 1:: TSCA A 2:: ECHA P 3:: Canada A 4:: DSSTO	: Low Qualit 1:: C A 2:: D A 3:: E
				Text Color	Evaluate	d Q
•The color	nns represe s represent	the quality of relations		Black	N/A Quali	ity
•Each row	represents	the quality of relation		→Red	Low Q	
where nur	me, Name/ nber corres	ponds to name		Orange	Moderate	Q
numbering	g			Green	High Q	
				Blue	Conflict	

Select All Clear All Invert Selection Selected 2 of 2										
elected	CAS	Smiles	Depiction	Nar	CAS/Name	2D/Name	CAS/2D			
1. Yes	111-71-7	cccccc=	СНэ 0	1 1: hep 2: n-hep 3: hepta 4: hepta	1:: Low Quality 1:: Aquatic OASIS 2:: Estrogen Receptor 3:: USER DEFINED 2:: Low Quality 1:: Bacterial mutagenic 2:: Genotoxicity OASIS 2:: USER DEFINED	1:: Low Quality 1:: USER DEF 2:: Aquatic O/ 3:: Estrogen F 2:: Low Quality 1:: USER DEF 2:: Genotoxici 3:: Bacterial n	: High Quality 1:: Aquatic OASIS 2:: Bacterial mutagenicil 3:: Canada DSL 4:: DSSTOX 5:: ECHA CHEM 6:: ECHA PR 7:: ECOTOX			
2. Yes	70955-11-2	cccccc=	СН3 0	1: hexer	1:: High Quality 1:: Canada DSL 2:: DSSTOX 3:: ECHA PR 4:: HPVC OECD 5:: TSCA	1:: Low Quality	: Low Quality :/Name 1717 ty de			
	Tauto	meric sets) Search			1. Aqu 2. Estr 3. USE 2. n-heptanal 1. Bac	iatic OASIS rogen Receptor Binding Affinity OASIS ER DEFINED I terial mutagenicity ISSSTY			
1 . D (2) o pres case	ouble cl of the rep ented in t).	ick on t resentir he relat	the column ng names c tion (CAS/N	to see so hemical Iame in tl	urces 2	2. Ger 3. USE 3. heptanal 1. Car 2. DSS 3. ECF	notoxicity OASIS ER DEFINED nada DSL STOX HA CHEM			
						4. ECH 5. ECC 6. EIN 7. HP\ 8. ME	ia PK DTOX ECS /C OECD TI Japan			

Back to our target chemical, the first one is the actual 1-heptanal while the second one is a mixture containing 1-heptanal. As we are not interested in the mixture this chemical can be removed from the exercise (see next screenshot).

Q Select chemicals									
Select All	lear All Invert Se	election Sele	ected 2 of 2						
Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D		
1. Yes	111-71-7	cccccc=	снэ 6	1: heptaldehyde 2: n-heptanal 3: heptanal 4: heptanal (n-heptanal) (heptaldehyde)	1:: Low Quality 1:: Aquatic OASIS 2:: Estrogen Receptor 3:: USER DEFINED 2:: Low Quality 1:: Bacterial mutagenic 2:: Genotoxicity OASIS 2:: USER DEFINED	1:: Low Quality 1:: USER DEF: 2:: Aquatic O/ 3:: Estrogen F 2:: Low Quality 1:: USER DEF: 2:: Genotoxici 3:: Bacterial n	: High Qua 1:: 2:: 3:: 4:: 5:: 6:: 7:		
2. Yes	70955-11-2	ccccccc=	СНэ 6	1: hexene, hydroformylation products	1:: High Quality 1:: Canada DSL 2:: DSSTOX 3:: ECHA PR 4:: HPVC OECD 5:: TSCA	1:: Low Quality 1:: TSCA 2:: ECHA PR 3:: Canada DS 4:: DSSTOX 5:: HPVC OEC	: Low Qua 1:: 2 2:: 3 3:: 0 4:: 5 5::		
			/ Search				Cancel		

Q Select chemicals										
Select All	lear All Invert Se	election Sele	ected 1 of 2							
Selected	CAS	Smiles	Depiction	Names	CAS/Name	2D/Name	CAS/2D			
1. Yes	111-71-7	cccccc=	CH3	1: heptaldehyde 2: n-heptanal 3: heptanal 4: heptanal (n-heptanal) (heptaldehyde)	1:: Low Quality 1:: Aquatic OASIS 2:: Estrogen Receptor 3:: USER DEFINED 2:: Low Quality 1:: Bacterial mutagenic 2:: Genotoxicity OASIS 2:: USER DEFINED	1:: Low Quality 1:: USER DEF 2:: Aquatic O/ 3:: Estrogen F 2:: Low Quality 1:: USER DEF 2:: Genotoxici 3:: Bacterial n	: High Qua 1:: 2:: 3:: 4:: 5:: 6:: 7:			
2. No	0955-11-2	ccccccc=	CH3	1: hexene, hydroformylation products	1:: High Quality 1:: Canada DSL 2:: DSSTOX 3:: ECHA PR 4:: HPVC OECD 5:: TSCA	1:: Low Quality A 1:: TSCA A 2:: ECHA PR 3:: Canada DS A 4:: DSSTOX 5:: HPVC OEC	: Low Qua 1:: 2:: 3:: 4:: 5::			
 < □ 2 ✓ OK X Cancel 										

1. **Click** over the first column with label Yes, then the column become unmarked (labeled with No); **2**. **Click** OK

Chemical Input Target chemical identity

Chemical Input Exercise 2

- To add additional chemicals by hand into the matrix, right-click above the structure and select "Add target" and then "Structure".
- Enter the SMILES for 1-hexanal: CCCCCC=O and click "OK" (see next screen shot).

 The Toolbox finds two chemicals with the same structure and with different QA relations (CAS-Name; 2D –Name; CAS-2D).

6] Select c	hemicals							×		
	Select All Clear All Invert Selection Selected 1 of 2										
	Selected	CAS	Smiles	Depiction		Names	CAS/Name	2D/Name	CAS 🔺		
	1. Yes	66-25-1	cccccc	,/	СНз	1: 2: 3:	1:: High 1:: Ar 2:: Bi 3:: Ci 4:: D: 5:: E(6:: E(7:: F)	1:: High A 1:: U: A 2:: T: A 3:: EC 4:: AC 5:: RI 6:: NI 7:: P	: Hi		
	2. No	110-62-3	cccccc	///	CH3	1:	1:: High 1:: Ar 2:: Ar 3:: EC 4:: EC 5:: G	1:: Low (1:: G	: Lc +		
	✓ Interview of the set of the										

Chemical Input Target chemical identity

- Click OK to add your target to data matrix
- Click on the box next to "Substance Identity"; this displays the chemical identification information. (see next screen shot).

Chemical Input Target chemical identity

- To add the third chemical by hand into the matrix, rightclick above the structure and select "Add in category" and then "Drawing".
- Enter the SMILES for 3-ethyl-1-pentanal: CCC(CC)CC=O and click "OK".
- Your data matrix should now contain your three chemicals (see next screen shot).
Chemical Input Input target chemical#3 by SMILES

Chemical Input Input target chemical#3 by SMILES

				5 🙆 😣 🔧 🗒
QSAR TOOLBOX	► Input → Profiling → Endpoint → C	Tóioó Category Definition > Data Gap Filling	► Report	<u>A</u> bout <u>U</u> pdate
Document	Single Chemical	Chemical List		The OECD QSAR Toolbox for Grouping Chemicals into Categories
<u>N</u> ew <u>O</u> pen <u>C</u> lose <u>S</u> ave	<u>CAS# Name Structure Select Delete Query Cher</u>	IDs <u>D</u> B <u>I</u> nventory List		Developed by LMC, Bulgaria
Documents	Filter endpoint tree	1 [target] 2 [target]	3 [target]	
• ·Document_1 SMILES: CCCCCC=0	Structure	grand for grand to a	^{₩,C} →,C [₩]	
	☐Substance Identity			
	CAS Number	111-71-7 66-25-1	N/A	
	Chemical IDs	EINECS:2036964 EINECS:2006245	NA	
	Chemical Name	n-heptanal hexaldehyde heptanal hexylaldehyde heptanal (n-heptan		
	Molecular Formula	C7H14O C6H12O	C7H14O	
	Structural Formula	0=222222 0=2222222	0=22(22)222	
	HPhysical Chemical Properties Environmental Este and Transport			
	⊞ <u>Human Health Hazards</u>			
0=2222222				
8 ⁵⁴				
select filer type Create Apply				

Outlook

- Background
- Objectives
- Specific Aims
- The exercise

• Workflow of the exercise 1

- Chemical Input
- Profiling
- Endpoints

Endpoints

- Move directly to the module "Endpoints".
- Remember, "Endpoints" refer to the electronic process of retrieving fate and toxicity data stored in the Toolbox and it can be gathering in a global fashion or on a more defined basis.
- In this example we only want to retrieve data on toxicity to fish so select the following databases containing information on aquatic toxicity:
 - Aquatic ECETOC
 - Aquatic Japan MoE
 - Aquatic OASIS
 - Aquatic US-EPA ECOTOX
- Click "Gather Data" (see next screen shot).

Endpoints Gather data

Endpoints Available experimental data

- Results are available for two effects:
 - **Growth** for *Tetrahymena pyriformis* for both n-hexanal and n-heptanal.
 - **Mortality** for two species: *Pimephales promelas* and *Poecilia reticulata* for both n-hexanal and n-heptanal (see next screen shot).
- These can potentially be used for read-across to fill in the data gap for the third target: <u>3-ethyl-1-pentanal</u> (e.g. using the lowest available LC50 result).

Endpoints Available experimental data

QSAR TOOLBOX	→ Tin Finput → Profiling → E	ndpoint Category Definition) Data Gap Filling Preport	ි 🖲 😒 🔧 🖺 <u>A</u> bout <u>U</u> pdate
Data Import Import Import Gather Import	Export Delete	Tautomerize		The 0ECD OSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Databases Select Al Unselect Al Invert About Physical Chemical Properties Forvionmental Facte and Transport Context Co	Filter endpoint tree	[1 [target]	2 [target] [3 [target] [] [
Human Health Hazards	Gliiatea → Tetrahymena pyriform → Intoxication → Mortality → EC50 → LC50	(2/2) M: 114 mg/L (1/12)	M: 152 mg/L M: 9 mg/L, 5.9 mg	
Inventories	⊞3 h ⊞12 h ⊞24 h ⊞24 h ⊞24 h ⊞72 h ⊞72 h ⊞96 h ⊒Animalia	(1/2) (1/6) (1/6) (1/4)	M: >10 mg/L, >22 M: >18 mg/L, >10 M: \$.5(4.5;6.7) mg M: ≈4.3 mg/L, 5.5(
Select All Unselect All Invert About Canada DSL OSSTOX ECHA PR EN4CS HPVC OECD HPVC OECD METL Japan NICNAS ESCACHECS TSCA		(1/2) (2/6) M: 12 mg/L (2/2) M: 8.86 mg/L	M: 5.3(4.3;6.7) mg M: 17.8 mg/L, 22(2 M: 9.79 mg/L	
US HPV Challenge Program	Orderined Test organi FillMollusca (Invertebrates)	sma (species)		τ

Outlook

- Background
- Objectives
- Specific Aims
- The exercise

• Workflow of the exercise 1

- Chemical Input
- Profiling
- Endpoints

Profiling

- Click on "Profiling" to move back (yes back) to the previous module.
- Remember that "Profiling" refers to the process of retrieving information on the target compounds, other than and toxicity data.
- Available information includes likely mechanism(s) of action.
- In this exercise we will use the profiling results to evaluate the robustness of the analogue approach.

Profiling Profiling the target chemical

- As you remember, the outcome of the profiling determines the most appropriate way to search for analogues.
- For this example the following mechanistic and endpoint specific profiling methods should be selected:
 - Aquatic toxicity classification by ECOSAR
 - Acute aquatic toxicity MOA by OASIS
 - Acute aquatic toxicity classification by Verhaar(Modified)
- Select those 3 "profiling methods" by clicking on the boxes before the names of the profilers before clicking "Apply" (see next screen shot).

Profiling Profiling the target chemical

		<u> </u>	01010			🕤 🙆 🔕 🔧 🗒
QSAR 🤈 LBOX 💟			TÓIOÓ			<u>A</u> bout <u>U</u> pdate
> Input	Profiling Endpoint	Category Definition	Data Gap Filling	▶ Report		
Profiling Schemes						The OECD QSAR Toolbox for Grouping Chemicals into Categories
Apply <u>N</u> ew <u>V</u> iew <u>D</u> elete						Developed by LMC, Bulgaria
Profiling methods	Filter endpoint tree		1 [target]	2 [target]	3 [target]	A
Select All Linselect All Invert About						
Toxic bazard by Cramer (original)			CH+		× 0-	
Vitimate biod	Structure		···~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
e E dpoin Specifi			<i>,</i>	<i>,</i>	<i></i>	
At the aquat sification by Verhaar (Modified)						
Ac te aquatic toxicity MOA by OASIS						
A Clauc toxicity classification by ECOSAR Braccumulation - metabolism alerts		(4(40)		M: 9 ma/l 5 9 ma		
Coaccumulation - metabolism half-lives	- ±intoxication	(1/12)		W. 5 Hg/L, 5.5 Hg		
Biodegradation fragments (BioWIN MITI)	H±Mobility					
Carcinogenicity (genotox and nongenotox) alerts by ISS						
DART scheme v.1.0	-⊞EC50					
DNA alerts for AMES by OASIS v.1.4	-==EL50					
DNA alerts for CA and MNT by OASIS V. 1. 1						
Eve irritation/corrosion Inclusion rules by BfR		(1/2)		M: >10 ma/L. >22		
in vitro mutagenicity (Ames test) alerts by ISS		(112)				
in vivo mutagenicity (Micronucleus) alerts by ISS		(4.15)		M: >19 ma/L >10		
Keratinocyte gene expression	+±:24 n	(1/6)		WI. 210 mg/L, 210		
Oncologic Primary Classification	48 h	(1/6)		M: 5.5(4.5;6.7) mg		
Protein binding alerts for Chromosomal aberration by OASIS Protein binding alerte for align constituation by OASIS v1.4	-⊞72 h	(1/4)		M: ≈4.3 mg/L, 5.5(
Respiratory sensitisation	————————————————————————————————					
Retinoic Acid Receptor Binding	Animalia					
	-FTArthropoda (Inver	tebrates) (1/2)		M: 5.3(4.3;6.7) mg		
Metabolism/Transformations	H=Chordata (Verteb	rates)				
		(Fish)				
Select All Unselect All Invert About		orochinuo				
Documented		,				
Observed Microbial metabolism	Leuciscus id	lus				
Observed Rat In vivo metabolism	Oncorhynch	us mykiss				
Observed Rat Liver S9 metabolism	— Pimephales	promelas (2/6)	M: 12 mg/L	M: 17.8 mg/L, 22(2		
Simulated	— Poecilia reti	culata (2/2)	M: 8.86 mg/L	M: 9.79 mg/L		
Autoxidation simulator	Salmo gaird	neri (new name: oncorh				
Autoxidation simulator (alkaline medium)	Undefined T	est organisms (species)				
Hydrolysis simulator (acidic)	HTTMollusca (Inverte	hrates)				
Hydrolysis simulator (basic)		bidtooj				-
				1		

1. **Select** the profilers related to the target endpoint; **2**. **Click** Apply.

Profiling Profiling the target chemical

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appeared as a dropdown box under the target chemical.
- The target and source chemicals have the same mechanisms or modes of action relevant for acute aquatic toxicity.
- The Toolbox does not provide any arguments against read-across (see next screen shot).

Profiling Profiles of the targets

	Profiling Endpoint Category Definition	0000 0100 ► Data Gap Filling ► Report		🕤 🕝 🐼 🔧 📳 <u>A</u> bout Update
Profiling Profiling Schemes				The OECD QSAR Toolbox for Grouping Chemicals
∮ <u>P</u> × Apply <u>N</u> ew <u>Vi</u> ew Delete Profiling methods	Filter endpoint tree	1 [target] 2 [target]	● 3 (target)	In this case the target and source
Select All Unvert About Toxic hazard classification by Cramer (original) Itimate biodeg • Endpoint Specific Acute aquatic toxicity classification by Verhaar (Modified) ✓ Acute aquatic toxicity MOA by OASIS ✓ Aquatic toxicity dassification by ECOSAR Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts	ESubstance Identity EPhysical Chemical Properties ESubstance Identity	g	H10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	chemicals have the same mechanisms and modes of action.
Biodegradation fragments (BioWIN MITT) Carcinogenicity (genotox and nongenotox) alerts by ISS OART scheme v. 1.0 ONA alerts for AMES by OASIS v. 1.4 ONA alerts for CA and MNT by OASIS v. 1.1 Eye irritation/corrosion Enclusion rules by BR Eye irritation/corrosion Inclusion rules by BR in vitro mutagenicity (Ames text) alerts by ISS in vitro mutagenicity (Microndeus) alerts by ISS Keratinocycle gene expression Oncology crimary Classification Protein binding alerts for Chromosomal aberration by OASIS	Highwonmental rate and transport Highwonmental rate and trate and transport	M: 12 mg/L, 8.86 M: 17.8 mg/L, 9.7 Class 3 (unspecific Class 3 (unspecifi Aldehydes Aldehydes Aldehydes (Mono) Aldehydes (Mono)	9 ic Class 3 (unspecific Aldehydes) Aldehydes (Mono)	So the Toolbox does not provide any arguments against read- across.
Protein binding alerts for skin sensitization by OASIS v1.4 Respiratory sensitisation Retroic Acid Receptor Binding Metabolism/Transformations Select All Unselect All Invert About Documented Observed Mammalian metabolism Observed Mammalian metabolism			•	This step is critical for next grouping of analogues.
Simulated Auto Auto Hydr Classification by	to see why this target y ECOSAR	t is		

Aquatic toxicity classification by ECOSAR of "n-heptanal"

Category definitions	Profile Description										
Aquatic toxicity classification by ECOSAR											
- Acid Halides	ECOSAR Class Definition: Aldehydes (Mono)										
Acid moiety			-								
Acrylamides	The Aldehvdes (Mono) class is identified by the following structure:										
Acrylates											
Aldehydes (Mono)											
Aldehydes (Poly)											
Aliphatic Amines		0									
Alkoxy Silanes		Ч. П.									
Amides											
Anilines (amino-meta)		, C									
- Anilines (amino-ortho)	L L	J´ `₽1									
Anilines (amino-para)											
Anilines (Hindered)											
Anilines (Unhindered)											
Aziridines											
Benzodioxoles	R1 - attachme	ent must be either an alkvl carbon. a	romatic carbon, carbonvl or hvdrog	en.							
Benzotriazoles		, , ,	, , , , , ,								
Benzoylcyclohexanedione	The structure	can contain only one aldehvde funct	ional group to be classified as Alde	hydes (Mono). If a structure contains more than one aldehyde group, it will be classified as							
Benzyl Alcohols	Aldehydes (P	Poly)	5 1	, , , , , , , , , , , , , , , , , , , ,							
- Benzyl Halides	/ lacityaco (i	011).									
- Benzyl Imides	If the R1 attac	chment is an olefinic carbon acetyle	nic carbon or allyl group (-CC=C) t	he structure will be classified as a VinvI/AllvI Aldehvde. In the current ECOSAR program structures							
Benzyl Nitriles	classified as	Vinvl/Allvl Aldehvdes are not additio	nally classified as Aldehydes (Mon								
- Carbamate Esters	ciassilieu as	Villy Addenydes are not addite	nally classified as Aldenydes (Mon	<i>).</i>							
Carbamate Esters, Phenyl	SMILES Strin	a Identifications:									
Carbonyl Ureas	0-0 or (D-C[H] or $D-CH$									
Diazoniums, Aromatic	0-00 01 0	o other attachments to carbonyl)									
Diketones	0-00 (10										
Epoxides, mono acid subst		 (no other attachments to cart 	oonyi)								
Epoxides, mono											
Epoxides, Poly											
Esters (phosphate)	Associated E	COSAR Class(s)									
Esters (Phosphinates)		and the structure sents in a second the	an and all the second second stands the second								
Esters	Aldenydes (P	<u>'oly)</u> - If a structure contains more that	an one aldenyde group, it will be cla	ssified as Aldenydes (Poly) instead of Aldenydes (Mono)							
Esters, Dithiophosphates	Vinul/Allul Ald	abudaa If the D1 attachment is an	alofinia carbon, acotylonia carbon o	ally group (CC=C) the structure will be eleccified as a Vipul/Ally Aldebyde. In the surrent							
Esters, Monothiophosphates		envues - II life K I allaciment IS an (Allul Aldebudee are not additionally	anyi group (-00–0), the structure will be classified as a viriyi/Anyi Aldenyde. If the current algorithm and the current							
Halo Acids	ECOSAR pro	gram, structures classified as vinyi	Aliyi Aldenydes are <u>not</u> additionally	classified as Aldenydes (Mono).							
Halo Alcohols											
Halo Epoxides											
Halo Ester	Evample Alda	abydes (Mono):									
Halo Ethers	Example Alue										
Halo Ketones (2 free H)	CASNO	Name	SMILES Notation								
Halo Nitriles	CAS NO.										
Haloacetamides	75-07-0	Acetaldehyde	0=CC								
Haloimides	123-72-8	Butanal	O=CCCC								
Halopyrdines	555-16-8	Benzaldehyde, 4-nitro-	O=Cc(ccc(N(=O)(=O))c1)c1								
Hydrazines	1/8-53-8	o-Vanillin	Ω = Cc(c(Ω)c(Ω C)cc1)c1								
Hydroquinones	140-33-0	Desceldebude 2 (telfburger 11 11									
Imidazoles	454-89-7	Benzaidenyde, 3-(trifluoromethyl)-	U=CC(CCCC1C(F)(F)F)C1								
Imides											
Inorganic Compound	1										

Profiling Recap

- You have entered the source and target chemicals being sure of the correct structures.
- You have checked the relevant databases for available experimental results.
- You have profiled the source and target chemicals.
- You have evaluated the robustness of the analogue approach and concluded that the read-across may be acceptable.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2
 - Chemical Input
 - Profiling
 - Endpoints

Read-across of acute toxicity to fish from 1-hepatanal and 1-hexanal to 2,5-diene-4-methyl-hexan-1-al.

- In the second example, we use the same source chemicals and a different target chemical.
- We can therefore simply delete the previous target chemical and enter the identity of the new target chemical.
- Right-click above the structure of chemical 3-ethyl-1pentanal and select "Delete chemical" (see next screen shot).

QSAR TOOLBOX		01010 01 1 10100			ର 🕝 🔕 🔧 🖁 <u>A</u> bout Update
Profiling Schemes Profiling Schemes Apply New View Delete	Profiling Findpoint Category Definition	▶ Data Gap Filling	▶ Report		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulga
Profiling methods Select All Unselect All Invert About Toxic hazard classification by Cramer (original) Ultimate biodeg Endpoint Specific	Filter endpoint tree Structure	1 [target]	2 [target]		
Acute aquatic toxicity dessification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS Aquatic toxicity dassification by ECOSAR Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Biodegradation fragments (BioWIN MITI) Construct and expression by Interference (Signameta)	⊟Substance Identity — CAS Number — Chemical IDs	111-71-7 EINECS:2038984 heptaldebyde	66-25-1 EINECS:2006245 bexanal	Focus Remove this target Set AOP target NA Add to Study Pad Select all as targets	
Carcinogeneous (genotox and nongenotox) alerts by ISS DART scheme v. 1.0 DNA alerts for ANES by OASIS v.1.4 DNA alerts for CA and MNT by OASIS v.1.1 Eye irritation/corrosion Exclusion rules by BR Eye irritation/corrosion Enclusion rules by BR	— Chemical Name — Molecular Formula — Structural Formula	n-heptanal heptanal heptanal (n-heptan C7H14O CCCCCCC=O	hexaldehyde hexylaldehyde C6H12O CCCCCC=O	C7H140 Add target Add	
in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Microroudeus) alerts by ISS Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by OASIS Protein binding alerts for skin sensitization by OASIS V1.4		M: 12 mg/L, 8.86	M: 17.8 mg/L, 9.79	Delete Delete Save to SMI file (DayLight format) Save to SMI file	
Respiratory sensitisation Retinoic Acid Receptor Binding Metabolism/Transformations Select All Inselect All Invest About	HProfile Gendpoint Specific Acute aquatic toxicity classification by Verhaar (M Acute aquatic toxicity MOA by OASIS Acute classification by ECOSAR	Class 3 (unspecific Aldehydes Aldehydes (Mono)	Class 3 (unspecific Aldehydes Aldehydes (Mono)	Class 3 (unt Print structures Class 3 (unt Export data for targets Aldehydes Export CAS list Aldehydes (Quested extra class for the Export CAS list	
Documented Observed Mammalian metabolism Observed Microbial metabolism Observed Rat In vio metabolism Observed Rat Liver S9 metabolism				· Query toormaan Carris	
Simulated Autoxidation simulator Autoxidation simulator Dissociation simulator Hydrolysis simulator (acidic) Hydrolysis simulator (hasic)	click on the previou	s target	; 2. Se l	lect Delete chemical.	

- Add the new target chemical as in the previous exercise.
- To add the third chemical by hand into the matrix, rightclick above the structure and select "Add category" and then "Drawing".
- Enter the SMILES for 2,5-diene-4-methyl-hexan-1-al: O=CC=CC(C)C=C and click "OK".

QSAR TOOLBOX	Profiling > Endpoint > Category Definition > Data Gap Filling	ති 🕘 🐼 🍾 🖞 About Update
Profiling Schemes		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Buigr
	Filter endpoint tree [1 [target] 2 [target] Structure g (***)	Focus Remove this target Set AOP target Add to Study Pad Select all as targets
Aquatic toxicity classification by ECOSAR Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts Biodegradation fragments (BioWIN MITT) Carcinogenicity (genotox and nongenotox) alerts by ISS DART scheme v.1.0 ONA alerts for AVES by OASIS v.1.4 DNA alerts for AVES by OASIS v.1.1 Eye irritation/corrosion Inclusion rules by BR Eye irritation/corrosion Inclusion rules by BR in vitro mutagenicity (Meronucleus) alerts by ISS in vitro mutagenicity (Meronucleus) alerts by	Substance Identity 111-71-7 CAS Number 111-71-7 Chemical IDs EINECS:2038984 Peptaldehyde hexal n-heptanal hexal n-heptanal hexal heptalal hexal Molecular Formula C7H140 CCCCCCC=0 CCCCCCC=0 EPhysical Chemical Properties Environmental Fate and Transport EHuman Health Hazards M: 12 mg/L, 8.86 M: 17.8 m Phofile Enclopeint coxicity classification by Verhaar (M Class 3 (unspecific Class 3 (u Acute aquatic toxicity classification by ECOSAR Aldehydes Aldehydes	Remove all as targets 2 Edit and add target Add target Add target Iff Add in category Iff CAS # Shift+F4 Chemical Name Shift+F5 Delete all except current Drawing Save to SMI file (DayLight format) Select from Database Shift+F7 Save to SMI file Select from Inventory Print structures Select from File Export data for targets Select from File Query tool matrix Ctrl+F3
Observed Marnalian metabolism Observed Marnalian metabolism Observed Marnalian metabolism Observed Rat In vivo metabolism Observed Rat Liver S9 metabolism Observed Rat Liver S9 metabolism Simulated Autoxidation simulator Autoxidation simulator Hydrolysis simulator (alkaline medium) Dissociation simulator Hydrolysis simulator (basic) Hydrolysis simulator (basic)	structure: 2. Select Add category: 3. Select Drawing	

The OECD QSAR Toolbox for Grouping Chemicals into Categories

		01010		🖻 🕲 🕲 🔧 🖷
QSAR TOOLBOX	CIJ Frofiling Findpoint Category De	finition → Data Gap Filling	► Report	<u>A</u> bout Update
Profiling Profiling Schemes Image: state sta				The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgari
Profiling methods Select Al Unselect Al Invert About Toxic hazard classification by Cramer (original) Utimate biodeg Invert About Endpoint Specific Acute aquatic toxicity dassification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS Aguatic toxicity dassification by ECOSAR Bioaccumulation - metabolism half-lives Biodegradation fragments (BioWIN MITTI) Carcinogenicity (genotix and nongenotox) alerts by ISS DART scheme v. 1.0 DNA alerts for AMES by OASIS v. 1.4 DNA alerts for AMES by OASIS v. 1.1 Eye irritation/corrosion Exclusion rules by BR Eye irritation/corrosion Exclusion rules by ISS In vitro mutagenicity (Ames test) alerts by ISS In vitro mutagenicity (Amers test) alerts by ISS In vitro mutagenicity (Carotodeus) alerts by ISS In vitro mutagenicity (Carotodeus) alerts by ISS In vitro mutagenicity (Amers test) alerts by ISS In vitro mutagenicity (Amers test) alerts by ISS In vitro mutagenicity (Carotodeus) alerts by ISS In vitro mutagenicit	Filter endpoint tree Structure Structure CAS Number Chemical IDs Chemical Name Molecular Formula Structural Formula EPhysical Chemical Properties EEnvironmental Fate and Transport Effectivicelogical Information	III- EINE hepti hepti hett (2/49) M: 1	2 [target] 4 C C C C C C C C Vork	• ★ 0 • ★ • • • ★ • ● ● ● ● ● ● ● ● ● ● ● ● ●
Oricologic Frilling V Cashinadori Protein binding alerts for Chromosomal aberration by OASIS Protein binding alerts for Chromosomal aberration by OASIS v1.4 Respiratory sensitisation Retinoic Add Receptor Binding Metabolism/Transformations Select All Unselect All Invert About Documented Observed Microbial metabolism Observed Microbial metabolism Observed Rat In vivo metabolism Observed Rat In vivo metabolism Observed Rat Invion metabolism Observed Rat Liver S9 metabolism Simulated Autoxidation simulator		aar (M Class Aldel Aldel		
Autoxidation simulator (akkaine medium) Dissociation simulation Hydrolysis simulator (acidic) Hydrolysis simulator (basic)		drag the mou	se with left butt	ond V OK Cancel

4. **Type** O=CC=CC(C)C=C in SMILES/InChi window; 5. **Click** OK.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2
 - Chemical Input
 - Profiling
 - Endpoints

Profiling

• In the module profiling, profile the new target chemical with the 3 profilers relevant for aquatic toxicity, in the same way as for the previous example.

Profiling Profiles of the targets

QSAR TOOLEOX		FI LIJ Profiling	€ndpoint	Category Definition	01010 01 1 10100 ▶ Data Gap Filling	► Report			句 🙁 🍾 📳 <u>A</u> bout Update
Profiling Profiling Schemes									The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Profiling methods Select All Unselect All Invert About Toxic hazard classification by Cramer (original) Utimate biodeg Invert About Utimate biodeg Acute aquatic toxicity MOA by OASIS Aquatic toxicity MOA by OASIS Aquatic toxicity MOA by OASIS Aquatic toxicity MOA by OASIS Aquatic toxicity MOA by OASIS Aquatic toxicity MOA by OASIS Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Bioaccumulation - metabolism half-lives Bioaccumulation - metabolism half-lives Bioaccumulation - metabolism half-lives Bioaccumulation - metabolism half-lives Bioaccumulation - metabolism alerts by DART scheme v. 1.0 DNA alerts for CA and MNT by OASIS v. 1.4 DNA alerts for CA and MNT by OASIS v. 1.1 Eye irritation/corrosion Exclusion rules by BR Eye irritation/corrosion Exclusion rules by DARSIS Eye irritation/corosion Exclusion rules by BR <td< td=""><td>fied) ISS E OASIS v1.4</td><td>Filter endpoint tree Structure CAS Number CAS Number Chemical IDs Chemical IDs Chemical Ana Chemical For Structural For Structural For Environmental F Environmental F Endpoint Spe Acute aqua Aquatic tos</td><td>tity me mula cal Properties ate and Transpor il Information Hazards cific tito toxicity classi tito toxicity MOA icity classificatio</td><td>t (2/49) fication by Verhaar (1 by OASIS n by ECOSAR</td><td>1 [target] 111-71-7 EINECS:2038984 heptaldehyde n-heptanal heptanal neptanal cCTH140 CCCCCCC=0 M: 12 mg/L, 8.86 Class 3 (unspecific Aldehydes Aldehydes (Mono)</td><td>2 [target] 66-25-1 EINECS:2006245 hexaldehyde hexylaldehyde C6H12O CCCCCC=O M: 17.8 mg/L, 9.79 Class 3 (unspecific Aldehydes Aldehydes (Mono)</td><td>3 [target] Image: Constraint of the second second</td><td>•</td><td>In this case the target and analogue (source) chemicals do not have same mechanism and modes of action, regarding ECOSAR classification So the read- across is questionable in</td></td<>	fied) ISS E OASIS v1.4	Filter endpoint tree Structure CAS Number CAS Number Chemical IDs Chemical IDs Chemical Ana Chemical For Structural For Structural For Environmental F Environmental F Endpoint Spe Acute aqua Aquatic tos	tity me mula cal Properties ate and Transpor il Information Hazards cific tito toxicity classi tito toxicity MOA icity classificatio	t (2/49) fication by Verhaar (1 by OASIS n by ECOSAR	1 [target] 111-71-7 EINECS:2038984 heptaldehyde n-heptanal heptanal neptanal cCTH140 CCCCCCC=0 M: 12 mg/L, 8.86 Class 3 (unspecific Aldehydes Aldehydes (Mono)	2 [target] 66-25-1 EINECS:2006245 hexaldehyde hexylaldehyde C6H12O CCCCCC=O M: 17.8 mg/L, 9.79 Class 3 (unspecific Aldehydes Aldehydes (Mono)	3 [target] Image: Constraint of the second	•	In this case the target and analogue (source) chemicals do not have same mechanism and modes of action, regarding ECOSAR classification So the read- across is questionable in
Observed Mamnalian metabolism Observed Microbial metabolism Observed Rat In vivo metabolism Observed Rat Liver 59 metabolism Simulated Autoxidation simulator Autoxidation Dissociatio		. +0.000		this tor	act is		1		particular analogues
Hydrolyss Hydrolyss classificatio	on l	by ECO	SAR	uns targ	jet is				

Recap

- You have replaced a target chemical with another target chemical in the data matrix.
- You have profiled the new target chemical.
- You have evaluated the robustness of the analogue approach and concluded that the read-across may not be acceptable by using the current analogue chemicals (source)
- The further workflow is to search for more suitable target analogues

Searching for More Suitable Analogues

- Before searching for more suitable analogues, delete nhexanal and n-heptanal from the data matrix by rightclicking above each of them and select "Delete chemical" or right-clicking above the target (2,5-diene-4-methyl-hexan-1-al) and select "Delete all except current" (see next screen shot).
- The aim of the next part of the exercise will be to find analogues which have the same profiling results as the target chemical.

Searching for More Suitable Analogues

1. Right click in the space above the target chemical; 2. Select Delete All except current.

Searching for More Suitable Analogues

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow of the exercise 1
- Workflow of the exercise 2
 - Chemical Input
 - Profiling
 - Endpoints
 - Category definition

- Currently it is not possible to query directly by several profiling results in parallel. The user has first to query according to one profiler and then subcategorise the results step-by-step according to other profilers.
- For this example, the user could first select the ECOSAR profiler of the target chemical and query for all the chemicals with the same structural feature in the selected databases (see next screen shot).

 Highlight "Aquatic toxicity classification by ECOSAR"; 2. Click Define and confirm the category from classification by ECOSAR profiler; 3. Click OK.

- The Toolbox now identifies all chemicals corresponding to mechanism "Vinyl/Allyl Aldehydes" by Aquatic toxicity classification by ECOSAR listed in the databases selected under "Endpoints".
- 45 analogues are identified. Along with the target they form a mechanistic category used for gap filling.
- The name of the category appears in the "Defined Categories" window, indicating the number of substances belonging to the category.

Document_1
 [1] Add to category

[46] Vinyl/Allyl Aldehydes (Aquatic toxicity classification by ECOSA

Category definition Reading data for Analogues

- The Toolbox will now retrieve those chemicals that have the same structural functionality as the target chemical based on ECOSAR profiler (Vinyl/Allyl aldehydes).
- The Toolbox automatically request the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

 In this example, as only databases are selected that contain information for aquatic toxicity endpoints, both options give the same results.

Category definition Reading data for Analogues

Due to the overlap between the Toolbox databases same data for intersecting chemicals is found simultaneously in more than one database. The data redundancy is identified and the user has the opportunity to select either a single data value or all data values.

Repeated values for: 90 data-points, 31 groups, 14 chemicals									
Data points									
	Endpoint	CAS	Structure	Value	additional_comme 🔺	Select one			
	LC50	107-02-8	^{(**}	27(24;30) micrograms per liter	1	Invert			
	LC50	107-02-8	,	27(24;30) micrograms per liter		Charle All			
	IGC50	N/A	"مربي	0.000832 mol/L					
	IGC50	N/A	1. Jan 1997	0.000832 mol/L		Uncheck All			
	LC50	4170-30-3	<i>о</i> сн _а	0.71 miligram per liter	TIME/OTHER DURATIONS ALL REPORTED//SO TO 47.00* mg/L//CL/21.00*	Cancel			
•					•				

1. Click Select one and then 2. Click OK.
Category definition Reading data for Analogues

The system automatically gives indication for the number of gather experimental data points

Category Definition Defined category

QSAR TOOLBOX	Fing → Endpoint → C	Category Definition	► Report		⑤ 🥝 🔇 🔧 🗒 <u>A</u> bout <u>U</u> pdate
Categorize	Clustering Delete Delete Delete All				The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Grouping methods Protein binding by OASIS V1.4 Protein binding by OECD Protein binding potency Superfragments Toxic hazard dassification by Cramer (extension) Toxic hazard dassification by Cramer (original) Utimate binding	Filter endpoint tree Structure	[1 (target)	2 3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Utimate biodeg	Bubstance Identity Dhysical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Generation Sediment Toxicity Direstrial Toxicity Direstrial Toxicity Define Endpoint Specific Acute aquatic toxicity MOA by OA Aquatic toxicity classification by E	(38/392), (12/430), an by Verhaar (M ASIS ECOSAR Class 3 (unspecific Aldehydes Vinyl/Allyl Aldehydes	M: 0.0114 mg/L, 0 M: 14 mg/L, 14.6 M: 5.61E-5 g, 1.74 M: 24.1 mg/L	M: 5.94 mg/L, 52.9 M: 3.4 mg/L, 7.05(. M: 1.2E3 milligram.	M: 0.014 mg/L, 0.0 M: 103 mg

Category Definition Subcategorisation

- After the available data has been retrieved, the user can then further subcategorize the results according to the following subcategorisations:
 - MOA of action
 - Verhaar classification
- These steps are summarized in the next screen shots.

Category Definition Subcategorisation by Acute aquatic toxicity MOA by OASIS

1. Select current category; **2. Click** Subcategorize; **3. Select** Acute aquatic toxicity MOA by OASIS profiler; **4.** Remove dissimilar chemicals and **5.** Confirm new category by **clicking** OK.

The

Category Definition Subcategorisation by Acute aquatic classification by Verhaar(Modified)

1. **Select** category with 39 analaogues; **2**. **Click** Subcategorise; **3**. **Select** Verhaar profiler; Note all analogues are in the same category as the target chemical so no further action is required.

Category Definition Results after subcategorisation

	<u>e</u> a <u>r</u>	01010					6) 😣 🔧 🗒
	Profiling Endpoint Category Definition	 Data Gap Filling 	▶ Report				<u>A</u> bout	Update
Categorize	Custering Delete Al						The OECD Q for Grouping into Categori Developed b	SAR Toolbox Chemicals es y LMC, Bulgari
Grouping methods	Filter endpoint tree	1 [target]	2	3	4	5	6	7
Protein binding by OASIS v1.4 Protein binding by OECD Protein binding potency Superfragments Toxic hazard classification by Cramer (extension) Toxic hazard classification by Cramer (original)	Structure		*** _	Š	<u>م</u> ر ً	CH _{cHa} cha	and the second)
Ultimate biodeg Endpoint Specific								
Acute aquatic toxicity classification by Verhaar (Modified)								
Acute aquatic toxicity MOA by OASIS	⊞Environmental Fate and Transport							
Bioaccumulation - metabolism alerts	Ecotoxicological Information							
Bioaccumulation - metabolism half-lives	- Aquatic Toxicity (32/78)		M: 5.94 mg/L, 52.9	M: 3.4 mg/L, 7.05(M: 0.014 mg/L, 0.0	M: 103 mg/L, 569	M: 138(123;165) m	. M: 3.92 mg
Biodegradation fragments (BioWIN MITI)	Sediment Toxicity							
DART scheme v. 1.0	L⊞Terrestrial Toxicity (9/84)			M: 1.2E3 milligram			M: 17.5 mg/L, 0.8	
DNA alerts for AMES by OASIS v. 1.4	⊞Human Health Hazards							
DNA alerts for CA and MNT by OASIS v. 1.1	Profile							
Eye irritation/corrosion Exclusion rules by BfR	Endpoint Specific							
in vitro mutagenicity (Ames test) alerts by ISS	-Acute aquatic toxicity classification by Verhaar (M	Class 3 (unspecific	Class 3 (unspecific	Class 3 (unspecific	Class 3 (unspecific	Class 3 (unspecific	. Class 3 (unspecific	. Class 3 (ur
in vivo mutagenicity (Micronucleus) alerts by ISS	 Acute aquatic toxicity MOA by OASIS 	Aldehydes						
Keratinocyte gene expression	Aquatic toxicity classification by ECOSAR	Vinyl/Allyl Aldehydes						
Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by OASIS v1.4 Respiratory sensitisation Retinoic Add Receive Binding rtER Expert System ver.1 - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Exclusion rules by BfR Ocument_1 [1] Add to category [46] Vinyl/Allyl Aldehydes (Aquatic toxicity classification by ECOSA [40] Subcategorized: Acute aquatic toxicity classification by ECOSA [40] Subcategorized: Acute aquatic toxicity dassification by [40] Subcategorized: Acute aquatic toxicity dassification [40] Subcate								

- Following the above-described subcategorisation exercise, 39 chemicals are left in the category. All have same mechanisms of action.
- The result is a group of chemicals which are classified as Vinyl/Allyl class by ECOSAR category and have same mode of action according to the MOA profiler.
- For 4 chemicals, experimental results for acute toxicity to fish are available- 4 chemicals have 96h-LC50 results from 3.4 to 7.29 mg/l for *Pimephales promelas;* 2 chemicals have 96h-LC50 results from 7.62 to 9.81mg/l for *Poecilia reticulata*; 1 chemical has 96h-LC50 0.91mg/l for *Oryzias latipes*.

(see next two screen shots)

96h-LC50 for Pimephales promelas

1. Right click above the Pimephales promelas; **2. Select** Sort (targets

The OECD OSAR Toolbox for Gordiny), then **3** Descending.

96h-LC50 from 3.4 to 7.29 mg/l for *Pimephales promelas*

	88			01010					5 G	😒 🔧 🗒
► Input	▶ Profiling	► Endpoint	Category Definition	▶ Data Gap Filling	▶ Report				Apour	opuate
Categorize		Delete							The OECD QS	AR Toolbox
🚥 🔤 👗 😂	3								into Categorie	chemicais 25
Define Define with metabolism Subcategorize Combine	Clustering	<u>D</u> elete D <u>e</u> lete All							Developed by	LMC, Bulgari
Grouping methods	Filter endpoint tree			1 [target]	2	3	4	5	6	7
Protein binding by OASIS v1.4						2%	8			
Protein binding potency				C	сна сна	H10-1		<u>(</u>	/CH3	
- Superfragments	Structure			~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ų v	and the second		CH2	6
Toxic hazard classification by Cramer (extension)					•	~	Q	${}$		
Ultimate biodeg		0								
 Endpoint Specific 		U F								
Acute aquatic toxicity classification by Verhaar (Modified)		n •	(1(1)							
Aquatic toxicity classification by ECOSAR		()) h	(1/1)							
Bioaccumulation - metabolism alerts		: II b	(2(2)							
Bioaccumulation - metabolism half-lives		r II 2 h	(2/2)							
Carcinogenicity (genotox and nongenotox) alerts by ISS) h	(1/1)							
- DART scheme v. 1.0		- 11 5 h	(1/1)							
DNA alerts for AMES by OASIS v. 1.4		Animalia								
Eye irritation/corrosion Exclusion rules by BfR		Annalida (Invortabratae	(1/1)							
Eye irritation/corrosion Inclusion rules by BfR		Arthropoda (Invertebrates) ("')							
 in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS 		Chordata (Nertebrates)								
Keratinocyte gene expression		Actinontervaii (Fish)								
Oncologic Primary Classification		Catostomus com	nersoni							
Protein binding alerts for Chromosomal aberration by OASIS v. Protein binding alerts for chin constituation by OASIS v1.4		Cyprinodon varieg	atus							
Respiratory sensitisation		- Jordanella floridae	100							
- Retinoic Acid Receptor Binding		- Lepomis macroch	inus (1/2)					M: >20 mg/L, 2.99		
 rtER Expert System ver. 1 - USEPA Skin irritation /correction Evolution rules by BfD 		- Leuciscus idus	(J ,		
Skin irritation/corrosion Inclusion rules by BfR		- Menidia bervilina								
< >		- Micropterus salmo	ides							
Defined Categories		- Oncorhynchus kis	utch							
a Document_1		Oncorhynchus my	kiss (1/1)					M: 1.67(1.25;2.24)		
[1] Add to category		-Oryzias latipes	(1/1)							
 [40] Subcategorized: Acute aguatic toxicity MOA by OASIS 		Pimephales prome	elas (4/5)		M: 7.29 mg/L	M: 5.94 mg/L, 5.9(M: 3.92 mg/L	M: 3.4 mg/L		
[40] Subcategorized: Acute aquatic toxicity classificatic 🗢		Poecilia reticulata	(2/2)				-			
< H	•		()							4

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Category Definition Interpretation of the results 96h-LC50 results for *Poecilia reticulata*

	> Profiling > Endpoint > Category Definition	01010 10100 > Data Gap Filling > Report		'5 😂 🐼 🔧 💾 About ∐pdate
Categorize	Clustering Delete Delete All			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Grouping methods Protein binding by OASIS 1.4 Protein binding by OASIS 1.4 Protein binding by OCCD Protein binding potency Superfragments Toxic hazard classification by Cramer (extension) Toxic hazard classification by Cramer (original) Ultimate biodeg 5 Endpoint Specific Acute aquatic toxicity classification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS	Filter endpoint tree Structure HEI3 h HEI6 h (1/1)] <u>6</u> 7 ▲
Aquatic toxicity for the VOLD Bioaccumulation - metabolism half-fives Bioaccumulation - metabolism half-fives Biodegradation fragments (BioVIII MITI) Carcinogenicity (genotox and nongenotox) alerts by ISS DART scheme v.1.0 DNA alerts for AMES by OASIS v.1.4 DNA alerts for CA and MNT by OASIS v.1.1				
Eye irritation/corrosion Exclusion rules by BR Eye irritation/corrosion Inclusion rules by BR in vitro mutagenicity (Micronucleus) alerts by ISS in vitro mutagenicity (Micronucleus) alerts by ISS Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by OASIS v. Protein binding alerts for skin sensitization by OASIS v.1.4		Hide Show hidden Collapse all Sort (targets priority) Ascending Sort Descending	3	
Respiratory sensitisation Rethnick add Receptor Binding rtRR Expert System ver. 1 - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Unit Industry Corrosion Inclusion rules by BfR Defined Categories	Lepomis macrochirus () Leuciscus idus Menidia beryllina Micropterus salmoides or us kisutch Or us mykiss ()	Function Set tree hierarchy Export CAS list Export	M: >20 mg/L, 2.99	
10 outlient_1 11 Add to category 146 Vinyl/Ally Aldehydes (Aquatic toxicity dassification by ECC 1 40 Subcategorized: Acute aquatic toxicity dassificatio 40 Subcategorized: Acute aquatic toxicity dassificatio	Pimephale promelas (Pimephale promelas (Poecilia reticulata (272 Salmo gairdneri (new name: oncorh)	V Wiki search species Copy path : 7.29 mg/L	M: 5.94 mg/L, 5.9(M: 3.92 mg/L M: 3.4 mg/L	

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Descending.

96h-LC50 results from 7.6 to 9.8 mg/l for Poecilia reticulata.

	Clip € > Profiling > Endpoint > Category Definition	01010 010100 ▶ Data Gap Filling ▶ Report		⑤ 🕝 🐼 🔧 🗒 <u>A</u> bout <u>U</u> pdate
Categorize	Delete Delete Clustering Delete Delete Al			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Grouping methods Protein binding by OASIS V1.4 Protein binding by OKCD Protein binding by OKCD Protein binding potency Superfragments Toxic hazard dassification by Cramer (extension) Toxic hazard dassification by Cramer (original)	Filter endpoint tree Structure	1 [target] 2	3 4 5 1	57^
Utimate biodeg Endpoint Specific Acute aquatic toxicity dassification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS Aquatic toxicity dassification by ECOSAR Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts Biodegradation fragments (BioWIN MITT)			M: 500 mg/L M: 78.3(71.9;84.8)	
Cardinogenicity (genotox and nongenotox) alerts by LSS DART scheme v.1.0 DNA alerts for AMES by OASIS v.1.4 DNA alerts for CA and MMT by OASIS v.1.1 Eve irritation/corrosion Inclusion rules by BfR Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ameas test) alerts by ISS in vitro mutagenicity (Ameronucleus) alerts by ISS	→ → → → → → → → → → → → → → → → → → →			
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by OASIS v. Protein binding alerts for skin sensitization by OASIS v1.4 Respiratory sensitisation Retinoic Add Receptor Binding rtER Expert System ver. 1 - USEPA Skin instation (erroration Evolution of the but BP)	Catostomus commersoni Cyprinodon variegatus Jordanella floridae Lepomis macrochirus (1/2) Leuciscus idus Menidia hervlina			
Skin initiation/corrosion Indusion rules by BiR Skin initiation/corrosion Indusion rules by BiR Defined Categories Document_1 [1] Add to category [46] Vinyl/Alyl Aldehydes (Aquatic toxicity classification by ECC	Micropterus salmoides Oncorhynchus kisutch Oncorhynchus mykiss (1/1) Oryzias latipes (1/1) Pimephales promelas (4/5)			
[40] Subcategorized: Acute aquatic toxicity MOA by OASIS [40] Subcategorized: Acute aquatic toxicity classificatio [40] III	Poecilia reticulata (2/2) Salmo gairdneri (new name: oncorh	M: 9.81 mg/L	W: 7.62 mg/L	

96h-LC50 results for Oryzias latipes

96h-LC50 results for *Oryzias latipes*

The OECD QSAR Toolbox for Grouping Chemicals into Categories

- Further visual analysis of the structures (see next two screen shots) could indicate that the following results are most suitable for read-across:
- Pimephales promelas : (E)-3,7-Dimethyl-2,6-octadienal
 96hLC50 = 7.3 mg/l
- Poecilia reticulata : 2-Ethyl-2-butenal 96hLC50 = 7.6 mg/l
- Indeed those chemical are structurally most similar based on branching and functional groups in the molecule.

QSAR TOOLBOX	Image: Constraint of the second se	⑤ 🙆 🔇 🔧 🗒 <u>A</u> bout <u>U</u> pdate
Categorize Categorize Categorize Categorize Categorize Categorize Categorize Categorize Combine Categorize Combine Categorize Catego	Clustering Delete Delete Al	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgari
Grouping methods	Filter endpoint tree 2 3 4	5 6
Lonization at pH = 9 Protein binding by OASIS v1.3 Protein binding by OCCD Protein binding potency Superfragments Toxic heard classification by Cramer (original)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Toxic hazard classification by Cramer (with extensions) Ultimate biodeg	+⊞72 h -□================================	
Endpoint Specific Acute aquatic toxicity dassification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS Aquatic toxicity MOA by OASIS Aquatic toxicity dassification by ECOSAR Bioaccumulation - metabolism alerts Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox) alerts by ISS DART scheme v.1.0 DNA alerts for AMES, MN and CA by OASIS v.1.3 Eye irritation/corrosion Exclusion rules by BfR Eye irritation/corrosion Exclusion rules by BfR Eye irritation/corrosion Indusion rules by BfR Eye irritation/corrosion Indusion rules by BfR in vitro mutagenicity (Micronucleus) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Keratinocyte gene expression Oncologic Primary Classification	Image: Constraint of the second se	M: >20 mg/L, 2.99
Protein binding alerts for Chromosomal aberration by OASIS Protein binding alerts for skin sensitization by OASIS v1.3	Oncorhynchus mykiss (1/1) Onzias latipes (1/1)	M: 1.67(1.25;2.24)
Respiratory sensitisation	Pimephales promelas (4/5) M: 7.29 mg/L M: 5.94 mg/L, 5.9(M: 3.92 mg/L Decilia reticulata (2/2) Undefined Test organism Amphibia (Amphibians, Frog) EMollusca (Invertebrates) ERotifera	M: 3.4 mg/L
^{9 Subcate} 1 . Chemical 2 is	most structurally similar to the target analogue	1/0/0

QSAR TOOLEOX	→ Input	FIT LIJ ▶ Profiling	Endpoint ► Catego	h Dry Definition	01010 01 1 10100 > Data Gap Filling	► Report			🍤 🎯 <u>A</u> bout L	🥹 🔧 🗎 Ipdate
Categorize	es rize <u>C</u> ombine Clu	😼 ustering	Delete	1.00			1		The OECD QS for Grouping (into Categorie Developed by	AR Toolbox Themicals S LMC, Bulgari
Grouping methods Protein binding by OASIS v1.4 Protein binding by OECD Protein binding by Oramer (extens Toxic hazard dassification by Cramer (origina Ultimate biodeg Endpoint Specific Acute aquatic toxidity dassification by Verha Acute aquatic toxidity MOA by OASIS Aquatic toxidity dassification by ECOSAR Bioaccumulation - metabolism half-lives Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox) a DART scheme v.1.0 DNA alerts for CA and MNT by OASIS v.1.1 Eve irritation/corrosion Endusion rules by BR Eve irritation/corrosion Endusion rules by BR in vitro mutagenicity (Meronuceus) alerts by IS in vivo mutagenicity (Meronuceus) alerts by IS is in vivo mutagenicity (Meronuceus) alerts by IS is in viro mutagenicity (Meronuceus) alerts by IS is in vivo mutagenicity (Meronuceus) alerts by IS is in vivo mutagenicity (Meronuceus) alerts by IS is in vivo mutagenicity (Meronuceus) alerts by IS is in viro mutagenicity (Meronuceus) alerts by IS is in irritation/corrosion Exclusion rules by BR is in irritation/corr	sion) ii) ar (Modified) ierts by ISS t S ISS ation by OASIS v. OASIS v1.4 t ty MOA by OASIS pxictly classification by ECC ty MOA by OASIS pxictly classification by ECC	Structure Structure		(1/2) (1/1) (1/1) (1/1) (1/1) (1/1) (2/2) e: oncorh (species)) (1/1) (1/1) (1/1) (1/1) (1/1)		2 	3 c ⁱ _s , c ⁱ _s ,	5 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	6 	
<	•	•								•

1. Chemical 3 is most structurally similar to the target analogue.

Category Definition Recap

- You have searched for suitable analogues having the same profile than the target compound by successive subcategorisation with 3 profilers.
- You have chosen the most suitable candidates to be used for read-across based on a visual analysis of their molecular structure.

Report

- Remember the report module (not reviewed in this exercise) allows you to generate a report on the predictions performed with the Toolbox. This module contains predefined report templates as well as a template editor with which users can define their own user defined templates. The report can then be printed or saved in different formats.
- The obtained prediction could be saved as a file and loaded later on in the system (see Tutorial 5).

Congratulation

- You have used some more functions of the Toolbox and changed up the workflow to address new issues.
- By now you should feel comfortable moving the curser around the basic screens for each one the modules.
- Continue to using the Toolbox and you speed and confidence will increase sharply.