QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Examples illustrating customized search (Query Tool) in Toolbox

Outlook

• Background

- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

Background

 This is a step-by-step presentation designed to take the user through the functionalities of Query tool (QT) engine implemented in Toolbox

Outlook

- Background
- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

Objectives

This presentation demonstrates a number of functionalities of the Query tool (QT):

- Identifying chemicals with specified structural fragments
- Identifying chemicals answering specific structural fragment criteria combined with parametric ranges
- Identifying chemicals answering specific combination of data, structural fragments and parametric data

Outlook

- Background
- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

Overview of Query tool

<u>Goal</u>: Searching for chemicals by structure, sub fragments, phys-chem properties and experimental data

Chemical identifier search

- CAS
- Name
- Molecular structures

Parameter search

- Calculated 2D parameters
- Calculated 3D parameters

Data search

• Search for data and metadata within imported databases

• Extended search

- Profiling
- Substructure
- Similarity

Overview of Query tool Prerequisites

•The Query tool functionality search for single structures matching desired criteria.

•The Query tool functionality search for chemicals within the selected databases and inventories only

Overview of Query tool Procedure for defining query

Step 1: Select databases/inventories of interest in the *Data* module

Step 3: Specify criteria for searching structures

Step 2: Click Query button

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Outlook

- Background
- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

Query tool window

• The Query tool is easily accessible on the Toolbox input panel

Close

Execute

Outlook

- Background
- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

The Exercise

- In this exercise we will demonstrate the following queries:
 - Subfragment search for:
 - Substituted diphenyl amine (Example 1)
 - Aliphatic halogens (Example 2)
 - Combination of Environmental Data (BCF) and 3D parameters (Dmax) (Example 3)
 - Combination of predefined category (Aldehydes) and ecotox data (LC50<1mg/l) (Example 4)
 - Combination of positive Ames; positive Carcinogenicity data and Subfragment search (*Epoxides*) (*Example 5*)
 - Combination of Skin sensitization data (EC3) and predefined category (*Aldehydes*) (*Example 6*)

Outlook

- Background
- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

Subfragment search for identifying chemicals Substituted diphenyl amine

Example 1

Search for structures that meet the structural requirements:

• Substituted diphenyl amine

N(c1cccc1)c1ccccc1

Example 1

Substituted diphenyl amine

N(c1ccccc1)c1ccccc1

QT procedure starts with selecting databases/inventories used for searching the desired criteria:

1. **Select** HPVC OECD inventory located under Data section. No databases have been selected in this exercise; 2. Click **Query** button located under **Input** section; The message informs the user that search will be performed on selected databases or inventories only 3. Click **Yes**; 4. Query panel appears; 5. Select **SubFragment** panel;

Example 1

fragment;

Substituted diphenyl amine

Example 1

Substituted diphenyl amine

N(c1ccccc1)c1ccccc1

Subfragments:	Options Search mode: All v Exact match Exact connectivity
View mode: Facade	 Navigation mode: Cascade xplore

5. Click the pencil button to draw a single bond; 6. Click near to one of the C atom from the benzene ring to draw a single bond; 7.Click **N** atom from the templates; 8. Put the selected N atom over the C atom from the single bond; 9. Repeat step 5 and draw a single bond to the N atom from NH2 group;

Example 1

Substituted diphenyl amine

N(c1ccccc1)c1ccccc1

Subfragments:	Options Search mode: All v Exact match Exact connectivity
View mode: Facade	Navigation mode: Cascade

10. Left click over benzene ring from the template in order to take benzene ring 11. Left click over the C atom in order to define second benzene ring to the NH group 12. Click **OK**.

Example 1

Substituted diphenyl amine

N(c1ccccc1)c1ccccc1

() s	earch									-		×
CAS	Name	Data	Parameters	SubFragment	Category	Similarity	AND	OR	NOT	Delete	Cle	ar
			C	lear All								
Sub	fragmen	ts:										
c 1	ccc(cc1)	Nc1ccc	:c1				0					
				Options				2				
				Search mod	e: All	~						
				Exact ma	atch		1					-
					meetivity		JI.					
	۸dd	Edit	Remove									
1	Huu	Luit	Keniove									
liew	mode:	F	acade	 Navigation 	mode: Ca	ascade	2					
												-
				Ô			3					
				\sim								
							4					7
eft c	lick on a	ny mar	ked atom to e	explore								
						Undate	1			-	2	
					Ē	Add		load	1	······		
					L	Add	Jave	LOad] F		-	_
									L	Execute	Clos	e

1. Click **Add** button; 2. The defined query appears on logic panel; 3. Double click over the query or click

Execute button to execute it.

Example 1

Substituted diphenyl amine

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

- **R** Any atom except H **Hal** – Cl, Br, I
- •HPVC OECD inventory has

been selected

•Search for discrete chemicals

1. Select the **HPVC OECD** inventory (no database has been selected in this case, only HPVC OECD) located under *Data* section; 2. Click **Query** button under *Input* section; 3. Click **Yes**

Example 2

Search for structures that meet the structural requirements:

 Aliphatic halogens 	Search CAS Name Data Darameters SubFragment Datagony Sir	ND OR NOT Delete Clear
Ŗ	Subfragments: 2	
R—C—Hal	SMARTS Editor S	- 🗆 X
H L	Smarts ~	×
R – Any atom except H Hal – Cl, Br, I	Add Edit Remove	[] \$ Rpt
•HPVC OECD inventory has been selected •Search for discrete chemicals	Left click on any marked atom to exp	Rpc Exh
1. Query panel appears; 2. Go to SubFragment panel; 3. Click "Add" button; 4. "SMARTS Editor" window appears;	S F P	OK Cancel
		LXecute

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

R – Any atom except H Hal – Cl, Br, I

•Define **Enumeration** fragment with three members (halogen atoms)

- 1. Left click the **C** symbol from the template and then left click in the drawing panel;
- 2. Left click the **pencil** button and draw a single bond;
- 3. Select the "[]" (enumeration) button;
- 4. Click over one of the carbon atoms;

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

R – Any atom except H Hal – Cl, Br, I

•Define **Enumeration** fragment with three members (halogen atoms)

5. Click the **selection tool**; 6. Click the new object; 7. *Object explorer* panel appears; 8. Right click over the *OR* expression node and select **Add child**;

25

Example 2

Search for structures that meet the structural requirements:

The OECD QSAR Toolbox for Grouping Chemicals into Categories

SMARTS Editor

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

R – Any atom except H Hal – Cl, Br, I

•Define **Enumeration** fragment with three members (halogen atoms)

Hal substituent is ready when all elements are selected (1). Now we can continue with defining of the rest substituents of the carbon atom (see the general structure above).

Example 2

Search for structures that meet the structural requirements:

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens


```
R – Any atom except H
Hal – Cl, Br, I
```

•Define fragment R including any type atom except H atom

1. Select the pencil button; 2. Draw two single bonds to the C atom;

29

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

R - C - Hal

```
R – Any atom except H
Hal – Cl, Br, I
```

•Define fragment R including any type atom except H atom

Click Selection tool; 4. Select C atom;
 Select "Any atom" from the Element drop-down menu;

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

R – Any atom except H Hal – Cl, Br, I

•Define fragment R including any type atom except H atom

6. Select **Any** from the *Aromatic or aliphatic* drop-down menu; 7.Repeat the steps from 3 to 6 for the second carbon atom

Example 2

Search for structures that meet the structural requirements:

Example 2

Search for structures that meet the structural requirements:

• Aliphatic halogens

R – Any atom except H **Hal** – Cl, Br, I

•Define skeleton of target compound

1. The defined general structure of the aliphatic halogens appears on the separate plot; 2. Click **Add** button; 3. Double click the query to perform the search

CAS Name Data Parameters SubFragment Category Similarity	AND	OR	NOT	Delete	Clear
Clear All					
Subfragments: [CI,Br,I][CH]([*])[*] Options Search mode: All Exact match Exact connectivity		3			
iew mode: Facade	2				
2 Update Add	Save	Load			
				Execute	Close

Subfragment search for identifying chemicals

Aliphatic halogens

Example 2

• Aliphatic halogens

Subfragment search for identifying chemicals BCF and (Dmax)

Example 3

•Structures search criteria

- Endpoint is BCF \geq 10 L/kg bdwt
- 3D parameter minimum value

of Diameter maximum >15 Å

Subfragment search for identifying chemicals BCF and (Dmax)

Example 3

- •Structures search criteria
 - Endpoint is BCF \geq 10 L/kg bdwt
 - 3D parameter minimum value of Diameter maximum >15 Å

- 1. Select databases including BCF data (Bioaccumulation Canada; Bioaccumulation fish CEFIC LRI and Bioconcentration NITE). No inventory has been selected in this exercise;
- 2. Click Query button;
- 3. Confirm that the searches perform on selected databases and inventories;
- 4. Go to Data panel;
- 5. Expand the endpoint tree and select BCF;
- 6. Specify qualifier "≥" 10 in the *Mean value* field;
- Define the scale "Bioaccumulation" and appropriate unit (L/kg bdwt);
- 8. Click Add button;

Example 3

- •Structures search criteria
 - Endpoint is BCF \geq 10 L/kg bdwt
 - 3D parameter minimum value

of Diameter maximum >15 Å

- 2. Select **Diameter maximum** from the popup list;
- Specify qualifier "≥" 15 in the *Expression* field;
- 4. Click Add button;

Example 3

- Structures search criteria
 - Endpoint is BCF \geq 10 L/kg bdwt
 - 3D parameter minimum value of Diameter maximum >15 Å

Both queries should be linked together by logical AND. For this purpose both queries should be selected first. How to do this:

1. Right click over the first query to select it (the selected boundary should become orange colored);

Selected auerv

(S) Not selected query

- 2. When the both queries are selected, click "AND" button;
- 3. The two queries are combined by logical "AND";
- 4. Double click "AND" query or click "Execute" button to execute the search;

	► Data ► Caten	01010 01 0 10100	Report		X 8 5 0 6	Þ
Document Single Chemical New Open Close Save Documents CAS# Name Structure Composition Document 1 Query tool: 107 Structure Structure 1 If Structure info Structure info	Select ChemIDs Data	1. Expand the 2. Expand th corresponding 4. Select <i>Ca</i> <i>chemicals</i> fro are calculated	e Parameters e 3D node; to the Diam alculate Dia om the appear d right click of	s node of t 3. Right c neter maxi <i>meter ma</i> red menu; 5 over the Di	the endpoir lick over t i mum para aximum f 5. Once the ameter ma	nt tree; he row ameter; for all values aximum
3		row and select	t Sort values	by Ascend	ing order.	
2 Calculated heat of format	Not calculated Not ca	alculated Not calculated	Not calculated	Not calculated	Not calculated	Nc
Diameter effective	Not calculated Not ca	alculated Not calculated	Not calculated	Not calculated	Not calculated	Nc
Diameter maximum	Not calculated	Not calculated	Not calculated	Not calculated	Not calculated	Nc
Diameter minimum	Not calculated Calculate	e/extract all parameters for all chemi		Not calculated	Not calculated	Nc
Dipole moment	Not calculated Calculate	e/extract all parameters		Not calculated	Not calculated	Nc
Electronegativity	Not calculated Calculate	e/extract all 3D parameters for all ch	emicals	Not calculated	Not calculated	Nc
GAP Energy	Not calculated Calculated	e/extract all 3D parameters		Not calculated	Not calculated	Nc
Geometric info Wenier index	Not calculated Calculat	e/extract "Diameter maximum"		Not calculated	Not calculated	Nc
Geometric Wenier index	Calculati	e/extract "Diameter maximum" for a	II chemicals	Not calculated	Not calculated	Nc
HOMO Energy				Not calculated	Not calculated	Nc
LUMO Energy	4 ted Diamete	r maximum	•	Not calculated	Not calculated	Nc
Maximum distance	ted 👤 Explain			Not calculated	Not calculated	Nc
Maximum donor delocalizability	Not calculated 👷 Delete n	rediction		Not calculated	Not calculated	Nc
Planarity	Not calculated	rediction		Not calculated	Not calculated	Nc
Planarity conjugated	Not calculated Set AOP	target		Not calculated	Not calculated	Nc
VdW surface	Not calculated Use for a	AOP		Not calculated	Not calculated	Nc
VdW surface DPSA1	Not calculated Conv			Not calculated	Not calculated	Nc
	Not calculated Not ca	alculated Not calculated	Not calculated	Not calculated	Not calculated	Ne
	index a					
Diameter maximum	15.8 (16÷16) Å 16.9 (23.7÷23.7) Å 16.2 (17.3÷17.3) Å	A 16.4 (18.5÷18.5) Å	17.4 (20.2÷20.2) Å	17.6 (19.7÷19.7) Å	15.7
— Diameter minimum	Export Data matrix		Not calculated	Not calculated	Not calculated	Not
Dipole moment	Generation Expand branch		Not calculated	Not calculated	Not calculated	Not
Electronegativity	Collapse branch		Not calculated	Not calculated	Not calculated	Not
Gap Ellergy	Expand All		Not calculated	Not calculated	Not calculated	Not
Geometric Wenier index	Collapse All		Not calculated	Not calculated	Not calculated	Not
HOMO Energy			Not calculated	Not calculated	Not calculated	Not
	larget endpoint	•	Not calculated	Not calculated	Not calculated	Not
Maximum distance	Open path		Not calculated	Not calculated	Not calculated	Not
Maximum donor delocalizability	Copy path		Not calculated	Not calculated	Not calculated	Not
Planarity	Superior		Not calculated	Not calculated	Not calculated	Not
Planarity conjugate				Not calculated	Not calculated	Not
VdW surface	Sort	· · · · ·	1 Ascending	Not calculated	Not calculated	Not
VdW surface DPSA 5	Calculate/extract all paran	neters for all chemicals	Descending	Not calculated	Not calculated	Not
VdW surface DPSA	Calculate/extract all 3D pa	rameters for all chemicals	Descending	Not calculated	Not calculated	Not
VdW surface DPSA3	Diameter maximum	•	Not calculated	Not calculated	Not calculated	Not
VdW surface PNSA1	Activate AOP		Not calculated	Not calculated	Not calculated	Not
Vdw surface PNSA2			I Not calculated	INOt calculated	I NOT CAICUIATED	INOT

QSAR TOOLBOX	+ - L - Input >	Data Catego	01010 01 0 10100 ory definition Data Gap Fillir	ng Freport						
Data Import Export Gather CLID6		1								
2 ments Databases	ad data?	_	×	3		4	5	6	7	8
Options	Il endpoints 🔾 Choose	from Tautomers	OK Cancel	ŔÔ	.\X	Ř	×	૾૾ૻૣ૾ૺ૰	\$0_0^*	00
Chemical Reactivity COLIPA ECHA CHEM Experimental pKa GSH Experimental RC50	Parameters				424 points addec	l across 107 chemica	ls. 4			
	D Physical Chemical Prope Environmental Fate and Bioaccumulation: and	rties Transport	6	_			ОК	5		
Biodegradation in soil OASIS Biodegradation NITE Biota-Sediment Accumulation Factor L ECHA CHEM	Bioaccumulation. ten	(107/424)	M: 3.3 log(L/kg bdwl M: 1.	04 log(L/kg bdv 📕 N	l: 1.4 log(L/kg bdwl	M: 0.857 log(L/kg bc	M: 2.04 log(L/kg bdv	M: 1.32 log(L/kg bdv	M: 1.82 log(L/kg bdv	M: 2.7 log(L/kg bdwl
ECOTOX Hydrolysis rate constant OASIS KM database Environment Canada Phys-chem EPISUITE	Photodegradation Stability in Water Transport and Distribution	ution between Environment								
Ecotovical aginal Tafarmatian	 Ecotoxicological Informa	lion ,			1. Go	to the Da	<i>ata</i> modu	le;		
					2. The Ga 3 Clic	e databa ther data	ises are i;	e already	y select	ed, click
					4. Clic 5. Dat	ck OK ; ta appear	on data	matrix;		
					6 41	107 chen	nicals hav	BCE da	ata	

LC 50 and predefined category (Aldehydes)

Example 4

•Structures search criteria

- Endpoint: LC 50 <1 mg/l
- Fish: P.promelas
- Effect: *Mortality*
- Predefined category: *aldehydes*

- Structures search criteria
 - Endpoint: LC 50 <1 mg/l
 - Fish: *P.promelas*
 - Effect: *Mortality*
 - Predefined category aldehydes

	Query
Databases	
ptions 🖌	Query tool
f Select All Unselect All Invert	The query was created with the following data sources:
	Bioaccumulation Canada
Ecotoxicological Information	Bioaccumulation fish CEFIC LRI
Aquatic ECETOC	Bioconcentration NITE
🗸 Aquatic Japan MoE	
	Would you like to restore them?
ECHA CHEM	from you me to restore them
ECOTOX	

- 1. Select databases related to LC50 data (Aquatic ECETOC; aquatic Japan MoE; Aquatic OASIS; ECOTOX). No inventories has been selected in this case;
- 2. Click Query tool button;
- Select "No";
- 4. Go to Data panel;
- 5. Type in filter the name of searched endpoint (LC50);
- Select Aquatic Toxicity and expand the endpoint tab;
- 7. Check **LC50**

SubFragment	Category	arity	AND	OK
CAS Name	Data	Parameters		
	Clear All	-	ī]	
▲ Endpoint de		^	ĺ	
Filter: LC50		Close		
	nformation			
▲ ✓ Aquetic Toxici	ty C			
✓LC50				
			1	
Terrestrial Tox	icity 7			
	-			
			2 ×	
✓ Metadata			3	
 Metadata Descriptors (numeric.) 	al metadata)		3	
 Metadata Descriptors (numeric) Duration 	al metadata)	× Add	3	
Metadata Descriptors (numeric) Duration Data	al metadata)	× Add	3	
 Metadata Descriptors (numerical Duration Data 	al metadata)	× Add	3	
Metadata Descriptors (numeric) Duration Data Mean value: none	al metadata)	× Add	3	
Metadata Descriptors (numeric) Duration Data Mean value: none Min value: none	al metadata)	× Add	3	
Metadata Mean value: Max value: Mean value: None None None	al metadata)	× Add	3	
Metadata Descriptors (numeric) Duration Data Mean value: none Min value: none Max value: none	al metadata)	Add	3	
Metadata Descriptors (numeric) Duration Data Mean value: none Min value: none Max value: none	al metadata)	Add	3	
Metadata Descriptors (numeric) Duration Data Mean value: none Min value: none Max value: none	al metadata)	Add	3	
Metadata Descriptors (numerical Duration Data Mean value: none Min value: none Max value: none	al metadata)	Add	3	

LC 50 and predefined category (Aldehydes)

- •Structures search criteria
 - Endpoint: LC 50 <1 mg/l
 - Fish: *P.promelas*
 - Effect: *Mortality*
 - Predefined category: *aldehydes*

- 1. Open Metadata field
- 2. Select "**Test organism (species)**" from thedrop-down menu;
- 3. Click Add;
- 4. Select *Pimephales promelas* from the dropdown menu;
- 5. Click Add;
- 6. Go back to **Metadata** field and select **Effect** from the drop-down menu;
- 7. Click Add;
- 8. Use filter to find **"Mortality**" from the appeared drop-down menu;
- 9. Click Add

C Court

Example 4

- Structures search criteria
 - Endpoint: LC 50 <1 mg/l
 - Fish: P.promelas
 - Effect: *Mortality*
 - Predefined category: *aldehydes*

SubFrag CAS	ment Name	Category Data	Similarity		AND	OR	NOT	Delete	(
CAS	Name	Data	Parameters						
			renemeters						
		Clear All							
				0					
 Metadata 				1					
Effect			Y Add						
 lest org is 'Pimepha Effect is 'Mortality 	anisms (species) ✓ Abrami les promε Ren ✓ Mortali ✓ Ren	v Add nove ty v Add nove	Remove	2					
 Descripto Duration Data 	ors (numerical m	etadata)	~ Add	3	1				
Mean value:	none v Mass co v	5 mg/L	3	4					
4	Filter: mas Mass concentra Mass Mass fraction Concentration i Administered d	tion n body (mass) ose(mass)	Update		Save	Load]		

- 1. Open **Data** panel;
- Open qualifiers from Mean value and select "<";
- 3. Type "1" in the blank field;
- 4. Use Filter to find "Mass concentration";
- 5. Select "**mg/l**" from the list with units;
- 6. Click Add;

 \mathbf{v}

- •Structures search criteria
 - Endpoint: LC 50 <1 mg/l
 - Fish: *P.promelas*
 - Effect: *Mortality*
 - Predefined category: *aldehydes*

E Search					_	×
CAS Name Data ers		AND	OR	NOT	Delete	Clear
SubFragment Category 🚽 1 ty						
Clear All						
Profile: Organic functional groups	~ -	📵 ·				
Target	- I`					
Aldebyde 2						
5		 1				
Down Up	_ 2	2				
Profiles						
Acrylic acids	^					
Acyl halide						
Acylal 3						
Acyloin		3				
Aldehyde	1					
Aldimine						
Aldoxime derivatives						
Aliphatic amine, primary						
and a second	<u> </u>	4				
Combine profiles Invert						
AND OR Strict						
ndpointPath/EndpointDefinition :						
extual Metadata:						
Text metadata: Test organisms (species) is Updat	te					
Iext metadata: Effect is 'Mortality'	1	Save	Load			
					Everute	lese
					execute	lose

- 1. Open Category panel;
- 2. Use *Filter* to find **Organic functional groups** profiler from the list with profilers;
- 3. Find "Aldehyde";
- 4. Click "**Up**" to move the selected category from panel "*Profilers*" to the panel "*Target*"
- 5. The selected category appears in the panel "Target"

Example 4

•Structures search criteria

- Endpoint: LC 50 <1 mg/l
- Fish: P.promelas
- Effect: *Mortality*
- Predefined category: *aldehydes*

1. Click Add button;

2. The query with predefined category appears on the logic panel.

The both queries should be combined by logical "AND". Follow the steps explained on slide # 39

- 3. Right click over the both queries to highlight them;
- 4. Click **AND** button;
- The two queries are combined by logical "AND";
- 6. Click **Execute** button in order to execute the Query

LC 50 and predefined category (Aldehydes)

Example 4

QSAR TOOLEOX	Input Profiling Data	ry definition Data Ga	p Filling > Repo	rt			
Data Import Export Gather Import IUCLID6 IUCLID6							
Documents	Filter endpoint tree Structure	Lag	2	3	4	5	6 ~_0_0
	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards						
Options ▲ f Select All Unselect All Invert							

The Query tool (QT) identified 6 chemicals matching the desired criteria. The list of identified chemicals appear automatically on the data matrix. Number of found chemicals is marked in the name of the node (1). In order to check the correctness of the performed query search the user should gather ecotox data and profile according to OFG Profiler. The last two steps are presented on the next two slides.

LC 50 and predefined category (Aldehydes)

LC 50 and predefined category (Aldehydes)

QSAR TOOLBOX	nput Profiling Data Catego	ory definition	ap Filling ► Repr	prt			
Documents Document 1 Query Tool: 6	Filter endpoint tree Structure Structure Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards	1 	2 OO M: 0.3 (0.26+0.34) m	3 	4 M: 0.845 mg/L	5 M: 0.767 mg/L	6
Profiling methods Options	Organic functional groups	Aldehyde Alkyl (hetero)arenes Alkyl-, alkenyl- and z Aryl Ether tert-Bubd	Aldehyde Aryl Aryl halide Ether	Aldehyde Alkyl halide Aryl	Aldehyde Aryl Aryl halide Phenol	Aldehyde Aryl Aryl halide Phenol	Aldehyde Aryl Ether

- 1. Go to the *Profiling* module;
- 2. Check Organic functional group profile;
- 3. Click Apply;
- 4. All 6 chemicals have "Aldehyde" fragment within its structure;

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

Example 5

- Structures search criteria
 - Endpoint: Gene mutation
 - Species: S.thyphimurium
 - Data: Positive

AND

- Endpoint: Summary carcinogenicity
- Species: Rat
- Route: gavage
- Data: Positive
- Predefined category: *Epoxides*

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

Example 5

- Structures search criteria
 - Endpoint: Gene mutation
 - Species: S.thyphimurium
 - Data: Positive

AND

- Endpoint: Summary carcinogenicity
- Species: Rat
- Route: gavage
- Data: Positive
- Predefined category: Epoxides

Before application of Query tool, the user should select databases which includes required data. Inventories are not selected in this particular case. 1. Select the following databases:

- Bacterial mutagenity ISSSTY
- Carcinogenicity potency Database (CPDB)
- Carcinogenicity&mutagenicity ISSCAN
- Genotoxicity OASIS
- Toxicity Japan MHLW
- 2. Click Query button;
- 3. Select **No** to not restore the databases used in the previous example.

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

Example 5

- •Structures search criteria
 - Endpoint: Gene mutation
 - Species: S.thyphimurium
 - Data: Positive

AND

- Endpoint: Summary carcinogenicity
- Species: Rat
- Route: gavage
- Data: Positive
- Predefined category: *Epoxides*
 - 1. Click on the **Data** panel;
 - 2. Use filter to find searched endpoint;
 - 3. Select Gene mutation;

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

Example 5

- Structures search criteria
 - Endpoint: Gene mutation
 - Species: S.thyphimurium
 - Data: Positive
 - Endpoint: Summary carcinogenicity
 - Species: Rat
 - Route: gavage
 - Predefined category: *Epoxides*

1. Before defining the second query click **Clear All** button;

2. Open endpoint path and select *Carcinogenicity* node;

3. Select Summary carcinogenicity;

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

- •Structures search criteria
 - Endpoint: Gene mutation
 - Species: S.thyphimurium
 - Data: Positive
 - Endpoint: Summary carcinogenicity
 - Species: Rat
 - Route: gavage
 - Predefined category: *Epoxides*

- 1. Click *Category* panel;
- 2. Select Carcinogenicity (genotox and nongenotox) alerts by ISS;
- 3. Select category **Epoxides and aziridines** (Genotox);
- 4. Click **Up** to move the selected category to the panel Target;
- 5. Click Add button;
- 6. The query appears on the logic panel;

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

- •Structures search criteria
 - Endpoint: Gene mutation
 - Species: S.thyphimurium
 - Data: Positive
 - Endpoint: Summary carcinogenicity
 - Species: Rat
 - Route: gavage
 - Predefined category: *Epoxides*

- 1. Right click over the three queries (see slide # 39);
- 2. Click **AND** button;
- 3. The three queries are combined by logical "AND";
- 4. Click **Execute** button;

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

qs	AR 1	TOOL	вох		+ Input		► Profiling	Data	Category definition	0101 01 1010 Data Gap	o Filling	► Report				
New	Docu Docu Open	ument X Close		# CAS#	TT Name	S Structu	ingle Chemical	Select Chen	Chemical	List List	- Substruct	Search	Target Endpoint			
⊿ Ä D	ocument 1 Query To	D pol: 6	ocuments				Filter endpoin Structure	t tree		1		2	3	4 Ø	5	6 H ₃ C
							 Structure in Parameters Physical Cl Environment Ecotoxicolo Human Heat 	fo nemical Properties ntal Fate and Trans ogical Information Ith Hazards	port							
										4						
The the che	Que que mica	ery t ry th Is ac	ool (ne u corc	(QT) ser ling	ide sho to a	ntif uld ppli	ied 6 c gather ied Car	hemica experi cinogen	ls matchin mental da icity profil	g th ta fo er. T	e des or Am he las	ired critentes and Const two ste	ria. In or Carcinogen ps are pr	der to ch nicity and resented	eck the o I profile on the ne	correctness the identif xt two slide

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including Epoxide fragment

QSAR TOOLEOX	Profiling Data Category definit	01010 01 0 10100 tion Data Gap Filling	► Report				
Data Import Export Gather 2 UCLID6 IUCLID6	1						
Documents Documents Ouery Tool: 6 Ouery Tool: Ch	Filter endpoint tree	× (0)	12 13	s 6 chemicals.	4 ×	5	6 _{Н3} с
	Human Heat Acute To Bioaccumulation	iancel		4	к		
Options → Databases Options → I Select All Unselect All Invert About ECOTOX Acute Oral toxicity ØBiccides and plant protection ISSBIOC Garcinogenic Potency Database (CPDB) Garcinogenic by ISSSTY	Carcinogenicity Carcinogenicity Rat Cavage Inhalation Developmental Toxicity / Teratogenicity	(1/2) M: 56.1 mg/kg bdwt 6/27) M: 34.7 mg/kg bdwt (6/14) M: Positive (3/6) (6/12) M: 4.28 mg/kg bdwt	M: Negative M M: Positive M M: Negative M: 2.96 mg/kg bdwt M	1: 118 mg/kg bdwt/ 1: Positive 1: 55.4 mg/kg bdwt	M: 24.3 mg/kg bdwt M: Positive M: 3.78 mg/kg bdwt	M: 63.7 mg/kg bdwt M: Positive M: Positive M: 21.3 mg/kg bdwt	M: 912 ma/kg bdwt/ M: Positive M: Positive M: 74.4 mg/kg bdwt
Cell Transformation Assay ISSCTA DBIU6 Dendritic cells COLIPA Developmental & Reproductive Toxicity (DART) Developmental toxicity ILSI Inventories Options f Select All Unselect All Invert Canada DSL	Genetic Toxicity	(6/92) M: Equivocal M: Positive M: Positive M: Positive M: Positive	M: Positive M M: Positive M M: Positive M M: Positive M M: Positive M	1: Positive 1: Positive 1: Positive 1: Positive	M: Positive M: Positive M: Positive M: Positive	M: Positive M: Positive M: Positive M: Positive M: Positive	M: Positive M: Positive M: Positive M: Positive
COSING DSSTOX ECHA PR EINECS HPVC OECD METT Japan NICNAS REACH ECB TSCA US HPV Challenge Program	Immunotoxicity Irritation / corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity	to the <i>Data</i> n tabases are a ck OK ; ck OK ;	nodule; Iready selec	ted, click	Gather d	lata;	
	Data a	appear on dat Ames mutage Summary car	a matrix ans enicity (S. tl ccinogenicity	swering th huphimuri / (gavage	ne followir ium): Pos , rat): Pos	ng criteria <i>itive</i> (5) sitive (6)	

Subfragment search for identifying chemicals

Chemicals with Ames and Carcinogenicity positive data including _____ Epoxide fragment

Pro 4 Custom profile Apply View New Delete	Profiling Data Category definition	Data Gap Filling	► Report				
Ocuments ▲ Â Document 1 Q Query Tool: 6	Filter endpoint tree Structure Structure info Parameters Physical Chemical Properties	1	2	3 >(O)>	4 0 0	5	6 H3C
2 Select All Unselect All Invert About Filter: Carci Close Close Carcinogenicity (genotox and nongenotox) alerts by ISS	Environmental Fate and Transport Ecotoxicological Information Human Health Hazards (6/176) Profile Substance type Endpoint Specific Carcinogenicity (genotox and nongenotox) al	M: 34.7 mg/kg bdwt	M: 2.96 mg/kg bdwt Discrete chemical Aliphatic halogens (Ger Epoxides and aziridines Structural alert for genc	M: 118 mg/kg bdwt/ Discrete chemical Epoxides and aziridines Structural alert for genc	M: 24.3 mg/kg bdwt Discrete chemical Epoxides and aziridines Structural alert for genc	M: 21.3 mg/kg bdwt Discrete chemical Epoxides and aziridines Structural alert for geno	M: 74.4 mg/kg bdwt Discrete chemical Epoxides and aziridines Structural alert for genc

- 1. Go to Profiling;
- 2. Click Unselect All;
- 3. Use filter and select Carcinogenicity (genotox and nongenotox) alerts by ISS;
- 4. Click Apply;
- 5. All 6 chemicals have "Epoxides and Aziridines" fragment within its structure.

Chemicals with Skin sensitization positive data including Aldehyde fragment

Example 6

•Structures search criteria

- Endpoint: EC3
- Data: Positive
- Predefined category: alpha, betaunsaturated aldehydes

Subfragment search for identifying chemicals

Chemicals with Skin sensitization positive data including Aldehyde fragment

- •Structures search criteria
 - Endpoint: *EC3*
 - Data: Positive
 - Predefined category: alpha, betaunsaturated aldehydes

- 1. Select databases including skin sensitization data. No inventories has been selected in this case;
- 2. Click Query tool button;
- 3. Select **No** to confirm that the databases in previous example not be used;
- 4. Click on *Data* panel;
- 5. Use filter to find searched endpoint;
- 6. Check EC3;
- 7. Go to Data panel;
- 8. Select scale Skin sensitization II (ECETOC);
- 9. Select Positive;
- 10.Click Add button;

	Search	– 🗆 X
	CAS Name Data arameters SubFragment Category Similarity	AND OR NOT Delete Clear
	Clear All	
	Endpoint definition	
	Filter: ec3 Close	0
	✓ Human Health Hazards ✓ Sensitisation	
	6	
		1
×		2
^	Filter:	2
ר	Skin sensitisation I (Oasis)	
~	Skin sensitization EC3(ratio)	
5	Skin sensitisation II (ECETOC)	
No	Skin Sensitization (Danish EPA)	3
	Mission Value: none 7	
	Min value: none	
	Max value: none V	4
	Unit Skin se V Positive V	
	Filter:	
	Negative	
	Positive	
		9
	Update	
	Add N	Save Load
		10 Execute Close

Subfragment search for identifying chemicals

Chemicals with Skin sensitization positive data including Aldehyde fragment

- •Structures search criteria
 - Endpoint: EC3
 - Data: Positive
 - Predefined category: alpha, betaunsaturated aldehydes

- 1. Click Category panel;
- Type in *Filter* to find the profile "Protein binding alerts for skin sensitization by OASIS";
- Select category Michael addition >>alpha, beta-Unsaturated carbonyl compounds>>alpha, beta-Aldehydes and move the selected category to the panel Target;
- 4. Click Add button;
- 5. The query appears on the logic panel.

Subfragment search for identifying chemicals

Chemicals with Skin sensitization positive data including Aldehyde fragment

- •Structures search criteria
 - Endpoint: EC3
 - Data: Positive
 - Predefined category: alpha, betaunsaturated aldehydes

- 2. Click AND button;
- 3. The two queries are combined together by logical "*AND*";
- 4. Click **Execute** button or double click And;

Subfragment search for identifying chemicals

Chemicals with Skin sensitization positive data including Aldehyde fragment

Example 6

QSAR TOOLBOX	Input ▶ Profiling ▶ Data ▶ Cates	gory definition Data Gap	o Filling ► Repo	rt						X 0 %
Data Import Export Gather Import IUCLID6	Export The OECD C for Grouping into Categor IUCLID6 Developed I									
Documents A Document 1 Query Tool: 14	Filter endpoint tree	1 2 HgC~~~~~	Hgc	3	4	5 HgC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			8	° /
	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity									
Databases Options 4 f Select All Unselect All Invert Rep Dose Tox Fraunhofer ITEM Repeated Dose Toxicity HESS Rodent Inhalation Toxicity Database Shu Irritation	Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity Immunotoxicity Irritation / Corrosion Neurotoxicity									
Skin Sensitization Skin sensitization ECETOC ToxCastDB Toxicity Japan MHLW Toxicity to reproduction (ER) ToxRefDB US-EPA	Protoinduced coacity Repeated Dose Toxicity Sensitisation AW SW AOP ToxCast Toxicity to Reproduction									

The Query tool (QT) identified 14 chemicals matching the desired criteria. In order to check the correctness of the query the user should gather experimental data for skin sensitization and profile the identified chemicals according to the "*Protein binding alerts for skin by OASIS*" profiler used in the query boundary. The last two steps are presented on the next two slides.

Subfragment search for identifying chemicals

Chemicals with Skin sensitization positive data including Aldehyde fragment

			_							
QSAR TOOLBOX		0101 01 1010								
Data Import Export Gather 2 106 IUCUD6	Input	efinition 🕨 Data Gap	p Filling 1 2 3 4	Go to the <i>Data</i> Databases are Click OK ;	module; already s	elected, c	lick Gath	ier data;		
Documents A Document 1	Filter endpoint tree		5	. Data appear oi	n data ma	atrix ansv	vering th	e following		
🔍 Query Tool: 14	Q Query Tool: 14									
Read data? X				EC3: Positiv	'e					
с. —										
 All end 	dpoints O Choose 🗌 from Tautomers	3								
			Θ		×					
	- Human Health Hazards									
	Acute Toxicity									
Databases	Bioaccumulation	•	30 po	ints added across 14 chemicals.						
Options / Developmental Taxiatity (Terrategoniaity										
f Select All Unselect All Invert Genetic Toxicity / Teratogenicity					4					
Rep Dose Tox Fraunhofer ITEM					OK					
Repeated Dose Toxicity HESS	Irritation / Corrosion	·								
Rodent Inhalation Toxicity Database	Neurotoxicity									
Skin Initiation	Photoinduced toxicity									
Skin sensitization ECETOC	Repeated Dose Toxicity									
ToxCastDB	Sensitisation AW SW AO	P								
Toxicity to reproduction (ER)	Skin									
ToxRefDB US-EPA				M. De cities			5			
<		2)		M: Positive	M: Docitive	M: Positive		M: Negative		
		5)		with the the payerne	I WILFOSITIVE	IN. FOSILIVE	V	Mi negauve		
Ontions 4	EC3 (14/1	5) M: Positive	M: Positive	M: Positive M: Positive	M: Positive	M: Positive	M: Positive	M: Positive		
f Select All Unselect All Invert	Miscellaneous (3/	3)		M: Positive				M: Negative		
Canada DSL	Undefined Assay (2/	2)		M: Positive				_		
COSING	ToxCast									
DSSTOY										

Subfragment search for identifying chemicals

Chemicals with Skin sensitization positive data including Aldehyde fragment

	P A		1010					X 🛛 🛧 🖉 🕻		
Prof inc Q Apply View New Delete	Profiling Data	Category definition	1. Go 2. Click 3. Sele sens	to <i>Profiling</i> ; k Unselect Al ect the profi sitization by O,	I ; le <i>Protein</i> ASIS;	binding	alerts	for skin		
Documents Documents Documents Profiling me Documents Document	Filter endpoint tree Structure Structure Structure info Parameters	1 2 4 н ₁ с	 Click Perf sele Che Che All Prot 	Click Apply ; Perform right click over the <i>Protein binding alerts</i> and select "Profile statistic"; Check the box next to <i>Group by category</i> . All 14 chemicals are alpha-beta aldehydes according to Protein binding alerts for skin sensitization profiler.						
 Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberral Protein binding alerts for skin sensitization acc Protein binding alerts for skin sensitization by i Frotein binding alerts for skin sensitization by i Frotein binding version by i Frotein binding version by i Frotein binding alerts for skin sensitization by i Frotein binding alerts for skin sensitization by i Frotein binding version binding alerts for skin sensitization by i Frotein binding alerts for skin sensitization by i Frotein binding version binding interversion control binding interversion context sensitization control binding interversion for the sensitization control binding interversion control binding interversion for the sen		M: Positive M: Positive M: Positive M: Positive M: Positive Michael Addition > M Michael Addition >> M Michael	Addition 4 Addition 4 Addition 4 Addition 4 Addition 5 Addition 5	rofile Statistic Siroup by category Category Michael Addition >> Michael addition on alpha Michael Addition >> Michael addition on alpha Michael Addition >> Michael addition on conju Michael Addition >> Michael addition on conju Michael Addition >> Michael addition on conju	Count % 7	14 Michael Addition a compounds >> alg Save to smi Print Add	Michael addition on al ha,beta-Aldehydes din new doc 2 5910-85-0	pha,beta-Unsaturated carbonyl		
Chemical elements Groups of elements Lipinski Rule Oasis	Expand branch Collapse branch Collapse branch Collapse All Collapse All Target endpoint Open path Copy path Function Sort		• Acti	Schiff base formation >> Schiff base formation Schiff base formation >> Schiff base formation ons Protein binding alerts for skin	with c 1 2.04 with c 1 2.04 sensitization by OASIS	4 6728-26-3 ~~~~~~	5 3913-71-1	6 101-39-3		
	5 Protein binding al Activate AOP Profile Statistic	erts for skin sensitization by OASIS	Count	5-	_	7 22418-66-2 **********************************	8 14371-10-9	9 101-86-0		

Outlook

- Background
- Objectives
- Overview of Query tool
- Query tool window
- The exercise
- Workflow process
- Save QT searches

Saving the prediction result

- This functionality allows storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc., on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on the next screenshots

Saving the QT requests

Open saved file

