The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Example illustrating endpoint vs. endpoint correlation for apical endpoints

Outlook

• Background

- Objectives
- The exercise
- Workflow

Background

This presentation is designed to introduce the user with:

- Illustration of different types endpoint vs. endpoint correlations using:
 - LLNA and GPMT skin sensitization data
 - DPRA and LLNA skin sensitization data
 - > Skin sensitization and Ames mutagenicity data

Outlook

- Background
- Objectives
- The exercise
- Workflow

Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

• Illustration of endpoint vs. endpoint correlations using different type endpoint data

Outlook

- Background
- Objectives
- The exercise
- Workflow

The exercise

- Illustration of different endpoint data correlations:
 - > LLNA vs. GPMT skin sensitization data
 - > DPRA (reactivity) vs. LLNA (skin sensitization) data
 - > GPMT (skin sensitization) vs. Ames mutagenicity data

Outlook

- Background
- Objectives
- The exercise
- Workflow

Workflow

- The Toolbox has six modules which are typically used in a workflow:
 - Chemical Input
 - Profiling
 - Endpoints
 - Category Definition
 - Filling Data Gaps
 - Report
- In this example we will use the modules in a different order, tailored to the aims of the example.

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Correlation of data background

Correlation of endpoint data Background

- This functionality introduce the user with opportunity to analyze correlations between selected gap filling endpoint (endpoint used for prediction) and other endpoint data.
- It is applicable for correlation analysis of data presented in ordinary, interval or ratio scale.
- If correlated data are measured in interval or ratio scale they are transformed in ordinary scale and the strength of the correlation is estimated by Spearman correlation coefficient.
- Basically, this functionality provides a correlation between target endpoint (this is the initial endpoint selected by the user) displayed on ordinate axis (Y-axis) and other endpoint data displayed on abscissa (X-axis).

Correlation of endpoint data Spearman coefficient factor

- Spearman's rank correlation coefficient is a nonparametric rank statistic proposed by Charles Spearman as a measure of the strength of an association between two variables. It assesses how well the relationship between two variables can be described using a monotonic function.
- Spearman correlation coefficient could be used for exploring the covary between:
 - two ranked variables
 - one measurement variable and one ranked variable (in this case, the measurement variable need to be to converted to ranks)
- Spearman correlation varies from -1 to +1 and the interpretation of the coefficient factor is provided below:
 - 0.00 0.19 very weak correlation
 - 0.20 0.39 weak correlation
 - 0.40 0.59 moderate correlation
 - 0.60 0.79 strong correlation
 - 0.80 1.0 very strong

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Correlation of data background
 - Types endpoint correlations

Types endpoint correlations are as follows:

- Continuous vs. continuous*
- Categorical vs. categorical:
 - ✓ Categorical vs. categorical
 - ✓ Categorized continuous vs. categorical
 - ✓ Categorized continuous vs. categorized continuous*

*Both type correlation is not illustrated in this presentations. They are presented in "Tutorial_4_TB 4.1_Illustrating endpoint vs. endpoint correlation using ToxCast data"

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Correlation of data background

• Types endpoint correlations

• Categorical vs. categorical

Types endpoint correlations Categorical vs. categorical

- The aim of this type correlation is to illustrate how categorical type data correlates each other.
- Categorical type data is the statistical data type consisting of categorical variables or of data that has been converted into that form. Such data is binary Ames data (dichotomic type): positive, negative or polytomic type data such as GPMT data: strong, weak and negative.
- Two examples illustrating this type correlation will be demonstrated:
 - Example 1: Correlation of two types skin sensitization data
 - LLNA (Positive, Negative) vs. GPMT (Weakly positive, Strongly positive, Negative)
 - Example 2: Correlation of skin sensitization and Ames mutagenicity data
 - LLNA (Negative, Weakly positive, Strongly positive) vs. AMES (Positive, Equivocal, Negative)
- Step by step workflow is presented on next few slides. Summary of the workflow steps are provided below:
 - Load Skin sensitization database (step 1)
 - Gather experimental data (step 2)
 - Define target endpoint (step 3)
 - Enter Gap filling (step 4)
 - Perform correlation between endpoints (step 5).

Categorical vs. categorical Load Skin sensitization database – step 1

Example 1: Correlation of LLNA and GPMT data

Categorical vs. categorical Gather experimental data – step 2

Example 1: Correlation of LLNA and GPMT data

Categorical vs. categorical Gather experimental data – step 2

Example 1: Correlation of LLNA and GPMT data

1. Skin sensitization data appeared on data matrix.

2. Data associated with different type assay (e.g LLNA, GPMT, HRIPT) are distributed in separate nodes

What is "scale" and "scale conversion" ?

Reminder slide

- Skin sensitisation as an example is a "qualitative" endpoint for which the results are presented with categorical type of data (for example: positive; negative; weak sensitizer; strong sensitizer, etc).
- Skin sensitisation potential of the chemicals came from different authors coded with different names (for example: data from John Moores University of Liverpool are: *Strongly sensitizing, Moderately sensitizing etc.*; data from European centre for Ecotoxicology and Toxicology of chemicals are: *Positive, Negative, and Equivocal*).
- The main purpose of the scales is to unify all data available in the Toolbox databases for a certain endpoint.
- "Scale conversion" is the TB instrument to create conversions between scales. More reasonable is to convert more informative to less informative scale.
- The default scale for Skin Sensitisation data is "Skin Sensitisation ECETOC". It converts all skin sensitization data into: Positive and Negative. This allows skin sensitization data to be used as much as possible for gap filling purposes.

Categorical vs. categorical Define target endpoint – step 3

Example 1: Correlation of LLNA and GPMT data

The target endpoint is EC3 data associated with LLNA assay. 1. **Click** on the cell associated with target endpoint;

Categorical vs. categorical Define target endpoint – step 3

Example 1: Correlation of LLNA and GPMT data

Categorical vs. categorical Enter Gap filling – step 4

Example 1: Correlation of LLNA and <u>GPM</u>T data

QSRR TO Qsp filling Gap filling Trend analysis Read across (Q)SAR Standardized Automated	bata bata category definition	1			
Documents Document 1 Broccast08 Skin Sensitization	EC3 1 Structure	2 3		5	
	Sensitisation AW SW AOP Skin U in Vivo ULNA Possible data inconsistency	M: Negative	M: Positive	Note: By def converted in positive/nega "Skin sensit	fault EC3 data has been nto binary categories: ative based on scale tization II (ECETOC)".
Data Gap Filling Settings	Native scale/unit Skin sensitization I (Oasis) (153 Skin sensitization EC3(ratio) (5 Skin Sensitization (Danish EPA) Skin sensitization I (Oasis) Skin sensitisation I (ECETOC) Skin sensitization EC3(ratio)	<u>)</u>		For the pur Skin sensitiz used. This s into three positive (E	pose of this exercise, ation I (OASIS) will be cale converts EC3 data categories: Strongly C3 0-10%), Weakly
C Only endpoint relevant Only chemical relevant to this position: Select a cell with a rigid (bold) path Automated workflows 1 Standartized workflows 1	 Skin sensitization GHS (ordinal) converted data 153 from scale Skin sensitisation I (Oasis) 574 from scale Skin sensitization EC3(ratio) Data 727/727; Chemicals 614/614 	4		positive (EC3 (EC3>50%).	3 10-50%) and Negative
	ОК	Cancel			

Enter Gap filling and apply read across. Read across is applied because a categorical type data is analyzed. Follow the steps:

1. **Go** to "Data Gap filling"; 2. Select "Read-across"; 3. Select "Skin sensitization II (ECETOC)" scale (see 4. Click "OK";

Note);

Categorical vs. categorical Enter Gap filling – step 4

Example 1: Correlation of LLNA and GPMT data

The message informing the user for how many chemicals with experimental data are excluded from gap filling due to missing X-descriptor value appeared 1. **Click** "OK";

Categorical vs. categorical

Perform correlation between LLNA and GPMT data- step 5

Example 1: Correlation of LLNA and GPMT data

Categorical vs. categorical

Perform correlation between LLNA and GPMT data- step 5

Example 1: Correlation of LLNA and GPMT data

1. Open Descriptor/data tab; 2. Click on Select endpoint tree descriptor; 3. **Open** nodes under "Sensitization" node; 4. **Select** second endpoint, which will be placed on X-axis circled in red box: SMWN; 5. **Click** "OK" button; 6. **Select** Scale I OASIS 7. **Click** OK

Categorical vs. categorical

Perform correlation between LLNA and GPMT data- step 5

Example 1: Correlation of LLNA and GPMT data

Categorical vs. categorical

Perform correlation between LLNA and GPMT data- step 5

Example 1: Correlation of LLNA and GPMT data

1.Select "Descriptor/ data"; 2. Click "Edit descriptor options"; 3.Select "Maximal"; 4. Click OK

Categorical vs. categorical Interpretation of correlation results (LLNA vs. GPMT)

Example 1: Correlation of LLNA and GPMT data

• Correlation analysis between two categorical type skin sensitization data (LLNA and GPMT) shows moderate endpoint correlation (Spearman coefficient is 0.54).

Types endpoint correlations Categorical vs. categorical

- The second example illustrating categorical vs. categorical type correlation is:
 - Example 2: Correlation of Skin sensitization and Ames mutagenicity data
 - LLNA (Negative, Weakly positive, Strongly positive)
 - AMES (Positive, Equivocal, Negative)
- Step by step workflow is presented on next few slides. Summary of the workflow steps are provided below:
 - Load Skin sensitization database (step 1) skipped, because this database is already loaded on data matrix
 - *Gather experimental data (step 2)*
 - Define target endpoint (step 3)
 - Enter Gap filling (step 4)
 - Perform correlation between endpoints (step 5)

Categorical vs. categorical

Gather experimental data – step 2

Sidebar of database relevancy

Once the endpoint is selected, the relevant databases are highlighted.

QSAR TOOLBOX	Input	
Data Import Export Import Import Import Import Gather Import IUCLID6 IUCLID6		
Cocuments A Document 1 A ■ Sensitization V = Farter GF(RA) with 602 chemicals, 713 d H = Data usage options are changed to:	Filter endpoint tree 1 2 3 4 5 Structure	6
	Structure info Image: Structure info Parameters Image: Structure info Physical Chemical Properties Image: Structure info	-
	Legend X Legend X Hun Target endpoint Have data for target endpoint Have data for target endpoint	
Options / Group by: Category ~ Sort by: Name ~	Have no data for target endpoint OK Bacterial Reverse Mutation Assay (e.g. Ames	
Color by: Endpoint sele Y Legend Options 4 f Select All Unselect All Invert Acute Oral toxicty	Gene mutation Salmonella typhimurium How So So Info (363/431) HOW With S9 (434/3714) Mit Negative How So So Info HOW With S9 (44/3278) Mit Negative How So Info	-
Beccerial mutagements in SSS in Beccerial mutagements in SSBIOC Carcinogenic Potency Database (CPDE Carcinogenicty/Smutagenicty ISSCAN Cell Transformation Assay ISSCTA Dendritic cells COLIPA	In Vitro Mammalian Cell Micronucleus Test (18/18) O	
Developmental & Reproductive Toxicit Developmental toxicity ILSI ECHA CHEM ECOTOX ECVAM Genotoxicity & Carcinogenicity EVCAM Genotoxicity & Carcinogenicity	Immunotoxicity Immunotoxicity Immunotoxicity Menutoxicity Photoinduced toxicity Repeated Dose Toxicity	+
V Genotoxicity OASIS Human Half-Life Keratinocyte gene expression Givauda Keratinocyte gene expression LuSens Micronucleus ISSMIC	Costicities Matabolism and Distribution Sensitivation AW SW AOP(1201/2019) M: Negative M:	
Micronucleus OASIS ✓		-

Categorical vs. categorical Gather experimental data – step 2

Example 2: Correlation of LLNA and AMES data

1. In order to start with next example please **click** on the level Skin sensitization from document tree 2. **Click** on Data tab

Categorical vs. categorical Gather experimental data – step 2

Example 2: Correlation of LLNA and AMES data

	Forfiling Category definition	01010 01 0 10100 Data Gap Filling	► Report						3	(0500
Data Import Export Gather Import IUCLID6 IUCLID6	1								T fr ir D	he OECD QSAR Toolbox or Grouping Chemicals ito Categories eveloped by LMC. Bulgari
Documents	Filter endpoint tree	1	2	3	4	5	6	7	8	9
	Structure	Hac	*******	HJC	NA Ô	Hard Cong	Å	HgC_J{_CH3	ng O	0
Y Enter OF(PA) with 602 chemicals, 713 data points	Structure info Parameters Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Bioaccumulation Carcinogenicity Genetic Toxicity Immunotoxicity Immunotoxicity Immunotoxicity Photoinduced toxicity Repeated Dose Toxicity Sensitisation AW SW AOP (1201/2019) ToxCast Toxicity to Reproduction Toxicokinetics, Metabolism and Distribution	M: Negative	2 M: Negative	M: Positive	M: Negative	M: Positive	M: Positive	M: Positive	M: Positive	M: Positive
Sikin Sensitization Sikin Sensitization ECETOC Toxicst08 Toxicity Japan MHLW Toxicity to reproduction (ER) 1. Remove EC3 from	the filter, click Ent	er 2, F	Position	on the	level of	aenetia	c toxicit	v as sh	own	

Categorical vs. categorical Gather experimental data – step 2

Example 2: Correlation of LLNA and AMES data

Gather 3 LDG UCLUDG Comment 1 Comment 1 C	Filter endpoint tree Structure	1	2	3	4	5 	6
Options ▲ Databases f Select All Invert	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Genetic Toxicity Genetic Toxicity / Teratogenicity Genetic Toxicity I in Vitro Marmalian Cell Micronucleus Test (18/18) In Vitro Marmalian Cell Micronucleus Test (18/18) In Vitro Marmalian Cell Gene Mutation Assay (58/68) I in Vitro Marmalian Cell Gene Mutation Assay (58/68) I in Vitro	M: Negative	Note possi data value filling endp workt modu	that the co ble when da matrix. One is that woul and gather oint during flow, prior t ile	orrelation be ata is gathe e should be d be using r the data f the "Endpo o entering	etween end red and ava aware of th during the o or the corre int" stage o the "Data ga	points is ailable on ne data data gap sponding f the ap filling"
	Irritation / Corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity Gensitisation AW SW AOP (1201/2019) ToxCast Toxicity to Reproduction Toxicokinglice Metabolism and Distribution	M: Negative	M: Negative	M: Positive	M: Negative	M: Positive	M: Positive

Select the databases including Ames data (green highlighted). Do not check ECHA Chem database.
 Skin sensitization DB is already selected;
 Click "Gather" 4. The data appeared on datamatrix;

Categorical vs. categorical Define target endpoint – step 3

Example 2: Correlation of LLNA and AMES data

QSAR TOOLBOX			010 0 100	nt				
Gap Filling Workflov	v Source of the second s							
Documents	Filter endpoint tree	1	2	3	4	5	6	7
A Document 1 ToxCastD8 Skin Sensitization	Structure	нустон	86000000		10% O	Hart Cas	J.	насурсана
	Structure info							
	Parameters Device Chamical Despection							
	Physical Chemical Properties Environmental Fate and Transport							
	Environmental rate and mansport Ecotoxicological Information							
	Human Health Hazards							
	Acute Toxicity							
	Bioaccumulation							
	Carcinogenicity							
	Developmental Toxicity / Teratogenicity							
	Genetic Toxicity							
	in Vitro							
	Bacterial Reverse Mutation Assay (e.g. (465/6883)	M: Negative						M: Positive
	In Vitro Mammalian Cell Micronucleus Test (18/18							
 Data Gap Filling Settings 	in Vitro Mammalian Chromosome Aberra(170/305)						
	Mammalian Cell Gene Mutation Assay (56/56							M. Desitive
Only endpoint relevant Only chemical relevant	Immunotoxicity (88/141							w. Fostuve
• Only chemical relevant								
At this position:	- Neurotoxicity							
Select a cell with a rigid (bold) path	Photoinduced toxicity	1						
Automated workflows 1 Standartized workflows 1	Repeated Dose Toxicity					L		
Distribut tack worknows	Sensitisation AW SW AOP							
	Skin				1			
	in Vivo							
	- GPMT (332/333							
						M: Positive		
			Mi Nagatiya	M. Desitive			M. Desitive	M. Desitive
	EC3 (614//2/		wi: Negative	wii Postuve			IVI: POSITIVE	IVI: POSITIVE
	ABC (236/236				M: Negative			
	SWAN (212/565	M: Negative						
	Undefined Assay (1/1	-						
	TovCast							

The target endpoint is skin sensitization/in vivo/LLNA/EC3; 1. **Click** on the cell associated with target endpoint;

Categorical vs. categorical Enter Gap filling – step 4

Example 2: Correlation of LLNA and AMES data

QSAR T 2 Gap Films Workfow	nput	ory definition Data Ga	1	ort					
Trend analysis Read across (Q)SAR Standardized Au	Itomated								
Ocuments	Filter endpoint tree	1	2	3	4	5	6	7	1
A Document 1 ExcestD8 Skin Sensitization	Structure	H	Rinnen	H ₂ C (H ₃)	HUN	Hart Cora	J.	N3C HC CH3	
	Structure info								-
	Parameters Device Chamical Entering						Ori		-
	Environmental Fate Possible data inconsistency		×		Can	vortad	011	yinai	-
	Ecotoxicological In				Con	verteu	h d	ata	
	Hum Native scale/unit					lata	u		-
	Skin sensitisation I (Oasis) (1	53 data; 153 chemicals)			U	iala			-
	Skin sensitization EC3(ratio)	(574 data; 461 chemicals)					/	-
	Gap filling scale/unit								-
	Genetic Toxic O Skin Sensitization (Danish EPA)						¥		
	In Vitro Skin sensitisation I (Oasis)			Data points				_	ΟX
	Bacterial O Skin sensitisation II (ECETOC)				_			1	
	in Vitro M Skin sensitization EC3(ratio) In Vitro M			Datapoints	*	Value	Origina	value	Assay
Data Gap Filling Settings	→ Mammali: Data 727/727: Chemicals 614/614								
Only endpoint relevant	□ In Vivo			luman kinalah kinanda Canaldanatia		M: Positive (Skin sens	itisation II	insting 5C2(estin))	
Only chemical relevant	Immunotoxicity			iuman nealui nazarus;sensiusauu	n i	(ECETOC))	1.00 /6 (akin sensit	zation Ecs(ratio))	LLINA
At this position:	Neurotoxicity	OK .	Cancel						
Select a cell with a rigid (bold) path	Photoinduced toxicity			c					>
Automated workflows 1 Standartized workflows 1	Repeated Dose Toxicity		ſ	Hierarchical mode Find					ОК
	Sensitisation AW SW A	4							-
									-
	GPMT (332/333)								-
	HRIPT (111/157)					M: Positive			
									_
	EC3 (614/727)		M: Negative	M: Positive			M: Positive	M: Positive	_
	A B C (236/236)				M: Negative				-
	SWAN (212/565)	M: Negative							-
	Undefined Assay (1/1)								-
	LTovCast								

Enter Gap filling applying read across. Read across is applied because a categorical type data is analyzed. 1. **Go** to "Data Gap filling"; 2. **Select** "Read-across"; 3. **Check** "Skin sensitization I (OASIS)" scale; 5. **Click** "OK"

Categorical vs. categorical Enter Gap filling – step 4

Example 2: Correlation of LLNA and AMES data

Categorical vs. categorical

Perform correlation between GPMT and AMES data - step 5

Example 2: Correlation of LLNA and AMES data

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Categorical vs. categorical

Perform correlation between GPMT and AMES data – step 5

Example 2: Correlation of LLNA and AMES data

1. **Open** Select/descriptors data/ Select endpoint tree descriptor; 2. **Open** nodes under "Genetic Toxicity" node; 3. **Select** "With S9" under In Vitro|Bacterial Reverse Mutation Assay (e.g. Ames Test)|Gene Mutation| Salmonella typhimurium; ; 4. **Click** "OK" button;

Categorical vs. categorical

Perform correlation between GPMT and AMES data - step 5

Example 2: Correlation of LLNA and AMES data

Categorical vs. categorical

Perform correlation between GPMT and AMES data – step 5

Example 2: Correlation of LLNA and AMES data

Categorical vs. categorical

Perform correlation between GPMT and AMES data – step 5

Example 2: Correlation of GPMT and AMES data

Select "Descriptor/ data"; 2. Click "Edit descriptor options"; 3.Select "Maximal" (worst case); 4. Click OK

Categorical vs. categorical

Interpretation of correlation results (GPMT vs. AMES)

Correlation analysis between two categorical type data: GPMT and AMES shows weak correlation between two endpoints (Spearman coefficient is 0.3).

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Correlation of data background

• Types endpoint correlations

- Categorical vs. categorical
- Categorized continuous vs. categorical

Types endpoint correlations Categorized continuous vs. categorical

- The aim of this type correlation is to illustrate how categorized continuous and categorical type data correlates each other.
- Categorized continuous data is the continuous type data (e.g LC50 or AC50, EC3, %) converted into categories.
- In this example we will illustrated how DPRA ratio data (%) correlates with LLNA data:
 - DPRA (ratio data expressed in % and converted in categories)
 - LLNA (categorical type: Strongly positive, Weakly positive, Negative)
- Step by step workflow is presented on next few slides. Summary of the workflow steps are provided below:
 - Load Skin sensitization database (step 1) skipped, because this database has been already loaded on data matrix
 - Gather experimental data (step 2)
 - Define target endpoint (step 3)
 - Enter Gap filling (step 4)
 - Perform correlation between endpoints (step 5).

Categorized continuous vs. categorical

Gather experimental data – step 2

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

1. **Click** again on the level of Skin sensitization; 2.Position the moues on the level of In Chemico level of endpoint tree; 3. **Click** on Data tab

Categorized continuous vs. categorical

Gather experimental data – step 2

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

1. **Go** to "Data"; 2. **Select** "Chemical reactivity COLIPA" database. Skin sensitization DB is already selected; 3. **Click** "Gather" button; 5. The data appeared on datamatrix;

Categorized continuous vs. categorical Define target endpoint – step 3

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

QSAR TOOLEOX	Profiling > Data > Category definition > Data	1010 D100 Gap Filling ► Repo	ort						X 0 5
Data Import Export Import Import Import Import Gather Import IUCLID6 IUCLID6									The OECD (for Groupin into Catego Developed
Documents	Filter endpoint tree	1	2	3	4	5	6	7	8
 ▲ Document 1 ▲ Document 2 ▲ Document 2 ■ Skin Sensitization 	Structure	H _s c-CH	********	HJC HJ	HeN		J.	H3C HCH3	
	Structure info								
	Parameters Physical Chemical Properties (314/772)		M: 12.5 %				M: 88 %	
	Environmental Fate and Transport								
	Ecotoxicological Information Human Health Hazards								
	Acute Toxicity								
	Bioaccumulation								
Databases	Carcinogenicity								
f Select All Unselect All Invert	Developmental Toxicity / Teratogenicity	•							
✓ Physical Chemical Properties	Genetic Toxicity	•							
Chemical Reactivity COLIPA		-							
ECHA CHEM Experimental pKa	Neurotoxicity	1							
GSH Experimental RC50	Photoinduced toxicity			└~、					
Environmental Fate and Transport	Repeated Dose Toxicity								
Bioaccumulation Canada	AW SW AOF	°	1						
Bioaccumulation fish CEFIC LRI Bioconcentration NITE									
Biodegradation in soil OASIS		0							
Biodegradation NITE		Ň	~			M: Positive			
Inventories									
Options 🖌	EC3 (614/727		l: Negative	M: Positive	M.N. P		M: Positive	M: Positive	M: Positive
f Select All Unselect All Invert	- Undefined Assay (1/1				M: Negative				
COSING	ToxCast								
DSSTOX	Toxicity to Reproduction	1							
EINECS	Toxicokinetics, Metabolism and Distribution								
HPVC OECD									
METI Japan NICNAS									
REACH ECB									
US HPV Challenge Program									

The target endpoint is EC3; 1. **Click** on the cell associated with target endpoint and target chemical;

Categorized continuous vs. categorical Enter Gap filling – step 4

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

1. **Go** to "Data Gap filling"; 2. **Select** "Read-across"; 3. **Select** "Skin sensitization I (OASIS)" scale ; 4-5. **Click** "OK";

Categorized continuous vs. categorical Perform correlation between DPRA and LLNA data – step 5

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

Types endpoint correlations

Categorized continuous vs. categorical Perform correlation between DPRA and LLNA data – step 5

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

Types endpoint correlations

Categorized continuous vs. categorical Perform correlation between DPRA and LLNA data – step 5

Example: Correlation of DPRA (%) and LLNA (Strongly positive, Weakly positive, Negative) data

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Categorized continuous vs. categorical Interpretation of correlation results (DPRA vs. LLNA)

- In this example we have correlate continues DPRA (%) data distributed into 3 bins (shown below) and categorical LLNA data (Strongly positive, Weakly positive, Negative)
 - Less than 9%
 - Grey zone 9 21%
 - Above 21%
- The high value of Spearman coefficient (0.49) shows moderate correlation between DPRA and LLNA data

Summary

- Different type correlations have been illustrated in this tutorial based on type of endpoint data:
 - Categorical vs. categorical:
 - Categorized continuous vs. categorical
- Correlation analysis has been evaluated by Spearman coefficient
- Moderate endpoint correlations have been obtained for 2 out of 3 illustrated examples.