QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Tutorial of how to use Automated workflow for ecotoxicological prediction

Outlook

- Aim
- Automated workflow
- The exercise
- Report

Aim

This is a step-by-step presentation designed to take the user of Toolbox through the automated workflow for ecotoxicity prediction.

Outlook

- Aim
- Automated workflow
- The exercise
- Report

Mechanistic understanding:

According to **McFarland**, the toxicity to aquatic organisms depends on penetration (log K_{OW}) of the chemical, followed by interaction with cellular biomolecules.

Ecotoxicological endpoint is:

- Sub-hazard *Aquatic toxicity*
- Effect *Mortality*
- Endpoint *LC50 (EC50)*
- Test duration 96 h
- Test species **P. promelas**

Workflow components:

• Except *Input* and *Reporting*, the rest of the Toolbox modules are part of the automated workflow (AW).

Workflow components: Profiling

- The aim is to collect structural and mechanistic information about the target
- Profilers collecting information for the target are organized in two groups:
 - Primary grouping profilers (PGPs):
 - US EPA, Verhaar,
 - MOA,
 - ECOSAR,
 - OFG (without nested)
 - Profilers for subcategorization (PS):

Substance type, Protein binding (OASIS/OECD), Chemical elements, Str. Similarity (ACF-first neighbors, Dice > 50%)

Workflow components: Data

- Databases
 - Aquatic OASIS
 - ECOTOX
 - ECHA CHEM
- Endpoint data
 - P. promelas ~ 5400 data for ~ 2400 chemicals
 - \circ *O. mykiss* ~ 6000 data for ~ 2000 chemicals

Workflow components: Category building

- The aim is to collect analogues based on global molecular features
- Profilers suitable for primary categorization:
 - US EPA,
 - Verhaar,
 - MOA,
 - ECOSAR,
 - OFG,
 - OFG US-EPA,
 - OFG, Norbert Haider.

Workflow components: Data Gap Filling

- The aim is to fill in missing data gap by
 - \circ Read-across (RA), or
 - Trend analysis (TA)
- Trend analysis is the default approach
- Read across is applied if

 Prediction by Trend analysis is not acceptable, or
 The number of analogues is < 10
- Gap filling and subcategorizations are sequence of logical operations (if, then), combined with criteria for acceptance.

Workflow components: Subcategorization

- The aim is to increase the similarity of analogues with the target
- It is consecutive process of application of primary grouping profilers (PGPs) and profilers for subcategorization (PS)
- Hierarchy of application of PGPs and PS depends on the number of analogues they have collected
- Sub-categorization process is based on:
 - Sequence of subcategorization steps
 - Criteria for acceptance of subcategorization steps

Workflow components: Subcategorization Profiling

Sequence of subcategorization steps

- *1. Substance type* eliminates not discrete chemicals
- 2. Water solubility (WSKOWWIN + WATERNT)
 - eliminates chemicals with LC50 > WS
- 3. Consecutive sub-categorization based on *PGPs*:
 - US EPA,
 - Verhaar,
 - MOA,
 - ECOSAR,
 - OFG (without nested)
- 4. Consecutive sub-categorization based on PS:
 - Substance type,
 - Protein binding (OASIS + OECD),
 - Chemical elements,
 - Str. Similarity

Workflow components: Subcategorization

Criteria for acceptance of subcategorization step:

- Depends on the specific statistical and structural criteria (e.g, experimental error, 95% of residuals, log K_{OW}, range of variation of the analogues etc.)
- Criteria are different for RA and TA

Workflow components: Subcategorization^{1. Input}

Criteria for acceptance of subcategorization for Trend analysis

1. Sub-categorization by PGPs

IF Interpolation **AND** ($R^2 \uparrow OR 95\%$ of residuals \downarrow) **AND** $NA \ge 10$ **THEN** accept the subcategorization and continue with the next PGP,

ELSE reject subcategorization and continue with the next PGP

2. Sub-categorization by PSs

IF Interpolation **AND** ($R^2 \uparrow \mathbf{OR} 95\%$ of residuals \downarrow) **AND** $NA \ge 10$ **THEN** accept sub-categorization and continue with the next PS, **ELSE** continue with the next PS

Definitions:

Interpolation: $\log K_{OW}$ of the target should be within the range of $\log K_{OW}$ of analogues

Correlation coefficient $R^2 \uparrow : R^2$ increases **OR** $R^2 \ge 0.85$

95% of residuals \downarrow : 95% of residuals decreases **OR** 95% of residuals ≤ 1.0

NA – Number of analogues

Workflow components: Subcategorization^{1. Input} Profiling

Criteria for acceptance of subcategorization for **Read** across

1. Sub-categorization by PGPs

IF Interpolation **AND** ($LC50 \downarrow$ **OR** log $Kow \downarrow$) **AND** $NA \ge 5$ **THEN** accept sub-categorization and continue with the next profiler

ELSE reject sub-categorization and continue with the next profiler

2. Sub-categorization by PSs

IF Interpolation **AND** ($LC50 \downarrow$ **OR** log $Kow \downarrow$) **AND** $NA \ge 5$ **THEN** accept sub-categorization and continue with the next profiler

ELSE reject sub-categorization and continue with the next profiler

Definitions

Interpolation: log K_{OW} of the target should be within the range of log K_{OW} of analogues

 $LC50 \downarrow$: for the 5 closest analogues the range of variation of LC50decreases **OR** range of variation is $\leq 2 \log units$

log K_{OW} ↓: for the 5 closest analogues the range of variation of log Kow decreases **OR** range of variation is ≤ 2 log units

NA – Number of analogues

After sub-categorization by all PGPs and PS

IF $(R^2 \ge 0.8 \text{ and } NA \ge 5)$ **OR** $(R^2 \ge 0.7 \text{ and } NA \ge 10)$ **THEN** accept the prediction and generate report, **ELSE** switch to Read across

Workflow components

Criteria for acceptance of **prediction for Read across**

After sub-categorization by all PGPs and PS

IF Interpolation **AND** $LC50 \le 2 \log \text{ units } \mathbf{OR} \log Kow \le 2 \log \text{ units } \mathbf{AND} NA \ge 5$ **THEN** accept prediction and proceed with Report

Definitions

Interpolation: log K_{OW} of the target should be within the range of log K_{OW} of analogues

 $LC50 \le 2$: for the 5 closest analogues the range of variation of LC50 is $\le 2 \log units$

log $K_{OW} \le 2$: for the 5 closest analogues the range of variation of log K_{OW} is ≤ 2 log units

NA – Number of analogues

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow algorithm - illustration

Outlook

- Aim
- Automated workflow
- The exercise
- Report

The Exercise

- In this exercise we will predict the skin sensitization effect for:
 - Single chemical CAS# 111-86-4;
 - Batch of chemicals

• This prediction will be accomplished by using of the automated workflow for skin sensitization.

Chemical Input

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

- I. Single target chemical
 - Chemical Name
 - Chemical Abstract Services (CAS) number (#)
 - SMILES (simplified molecular information line entry system) notation
 - Chemical with defined composition
 - Drawing chemical structure
 - Select from User's List/Inventory/Databases

II. Group of chemicals

- User's List
- Inventory/Database

Chemical Input: Single target chemical

- Open the Toolbox.
- Click on "Input" (see next screen shot).

Chemical Input Single target chemical

- 1. Click on Input
- 2. Main Input section

Input Single target chemical by CAS RN

1. Go to *Input*; 2. Click and type CAS # 111864; 3. Press <u>Search</u>; 4. Confirm by <u>OK</u>.

Data gap filling Automated workflow: An overview

- Algorithms for automated and standardized data gap filling have been developed for skin sensitization (LLNA and GPMT data) and acute aquatic toxicity to fish (*Pimephales promelas*, Mortality, LC50, 96 h).
- Once started, the automated workflows (AWs) follow the implemented logic and finished with prediction without interaction by the user.
- In this tutorial only the acute aquatic toxicity to fish is discussed.
- The Automated workflow can be used for a single chemical mode or in a batch mode.

Algorithm of Ecotoxicological workflow

Location of the Automated workflow for Ecotoxicity

A dialogue window gives the user a choice to select the endpoint (1);
Then select <u>OK</u> (2).

A workflow controller window is displayed throughout the automated workflow procedure. It includes:

- Workflow name (1);
- General task (2);

 Active task (this is subtask of the general task, which is currently being performed)(3);

- Navigation options (4);
- Activity log (5).

• When the workflow finishes a message is displayed that the prediction is accepted (1). •Also the progress bar is completely filled (2). •The user has to press <u>OK</u> (3). • Then close the workflow window by pressing **X** button (4).

Workflow Controller [Finished workflog]			- • ×
Workflow name	Success	×	4
General task Performing prim	Prediction accent	ad successfully	
Active task Pause Stop	Prediction accept	3 OK	2
Show activity log			
<pre>><characteristic false"="" type="LMC.Ch
Selected="></characteristic><character Selected="True" /><character Selected="False" /><character Selected="False" /><character Selected="False" /><character Selected="False" /><character Selected="False" /><character Step [11] , Subcategorization w [0.342] Accepting prediction</character </character </character </character </character </character </character </pre>	<pre>emistry.Similarity.Attac istic Type="LMC.Chemistry stic Type="LMC.Chemistry istic Type="LMC.Chemistry istic Type="LMC.Chemistr istic Type="LMC.Chemistr ristics>: [Structure Similarity ith profiler [Structure</pre>	<pre>hedHeavyAtomsCountChara y.Similarity.Hybridizat .Similarity.IncidentPiB y.Similarity.ValencyCha y.Similarity.ChargeChar y.Similarity.CyclicChar asisSimilarityOptions>]] Rsquared [0.990] Resi Similarity] RSquared :</pre>	<pre>cteristic" ionCharacteristic" ondsCharacteristic" racteristic" acteristic" acteristic" duals : [0.342] [0.990] 95% Residuals</pre>
			~

Data Gap Filling Automated workflow: Single chemical

QSAR TOOLBOX	input	► Categ	Ory definition	ap Filling > Repo	prt		
Gap Filling Workflo	w V utomated						
Documents	Filter endpoint tree		1 [target]	2	3	4 5	
ument 1 ▲ CAS: 111864 □ US-EPA New Chemical Categories □ Aquatic toxicity classification by ECOSAR ▲ ▼ Enter GF (AW by trend analysis) with 91 Che ▲ □ Chr. 831 Data: 107 Subcategorized: Subst	Structure		Н ₃ С~~~~Мин2	్రార్			~~°× ≪
4 Y Ch: 83 Data: 197 Subcategorized: Subst 4 Y Ch: 83] Data: 194 Filter by WS - Exp 1	Structure info						
▲ ▼ Ch: 79 Data: 188 Filter by WS - V	+ Parameters						
✓ Y Ch: 78 Data: 187 Filter by WS ✓ Im Ch: 70 Data: 170 Subcata	Physical Chemical Properties						
▲ [ii] Ch: 70 Data: 170 Subcate	Environmental Fate and Transport						
4 🕞 Ch: 58 Data: 149 \$	Ecotoxicological Information						
4 🕞 Ch: 15 Data: 4	Aquatic Toxicity	AW SW					
△ l@ Ch: 15 Dat △ @ Ch: 15							
⊿ [Ch:	└───── EC50 <or> LC50</or>						
⊿ 🔍	Animalia (animals)						
A	Chordata (chordates)						
C Organic functional groups	Actinopterygii (ray-finned fis	nes,sp					
Organic functional groups (US EPA)	Pimephales prometas	- 1	M: 5 15 mg/l		M: 25 (22 6 ÷ 27 6) mo/l	M: 114 mg/l	
Creatic functional groups, Norbert Haider (che			M: 5.19 (4.73÷5.7) mg/l		M: 25 mg/L	M: 127 (93÷170) mg/L	
	96 h	(123/316	M: 5.19 mg/L		M: 25.1 mg/L	M: 225 mg/L	
 Data Gap Filling Settings 			M: 5.19 mg/L T: 6.61 (2.53÷17.3) mg/			M: 470 mg/L	
✓ Only endpoint relevant	Sodimont toxicity		1. 0.01 (2.55 · 17.5) flig/				
✓ Only chemical relevant	Terrestrial Toxicity						
At this position:	+ Human Health Hazards						
At any position.	Profile						
Select a cell with a rigid (bold) path Automated workflows	- Predefined						
				1	1	I	

The prediction is displayed on the matrix labeled with "T", which stands for trend analysis;
"M" stands for measured data.

QSAR TOOLBOX	F ► Input	► Profiling	► Data	► Category definition	0 0 1 2
Gap Filling Image: Constraint of the second seco	Workflow				
 ▲ IDocument 1 ▲ # CAS: 111864 □ US-EPA New Chemical Categorie □ Aquatic toxicity classification I □ Aquatic toxicity classification I □ A classification I □ Ch: 83 Data: 83 Subcatege △ ♥ Ch: 78 Data: 79 Fi △ ♥ Ch: 78 Data: 79 Fi △ ♥ Ch: 78 Data: 70 Pi □ Ch: 70 Data □ Ch: 70 Data □ Ch: 60 △ □ Ch: □ Crganic functional groups □ Organic functional groups (US Effective) 	c sy ECOSAR is) with 91 Chemic jorized: Substance by WS - Exp Wate ter by WS - Wate 8 Filter by WS - Wate 8 Filter by WS - Wate 70 Subcategori: Data: 60 Subcategori: Data: 60 Subcategori: 58 Data: 58 Subca Ch: 15 Data: 15 Su © Ch: 12 Data: 1 24)	Documents cals with 215 data : type er Solubility r Solubility /ater Solubility (fragment zed: Aquatic toxicity class gorized: US-EPA New Che ategorized: US-EPA New Che ategorized: Acute aquati ubcategorized: Acute aquati ubcategorized: Organic f 2 Subcategorized: Struct	is) sification by ECOSAR emical Categories c toxicity MOA by OA functional groups ture similarity	SIS	

- The steps executed in the AW are listed in the Documents panel;
- AW always finishes at the level of primary grouping.

In case the prediction does not answer the criteria for acceptance of the prediction (1) or not enough data is collected for primary grouping then the corresponding messages appears, such as: "No enough data to build primary group" or Couldn't find a valid answer"(1)

- Click <u>OK</u>(1);
- Then close the workflow controller window (2)

The Exercise

- In this exercise we will predict the skin sensitization effect for:
 - Single chemical CAS# 111-86-4;
 - Batch of chemicals

• This prediction will be accomplished by using of the automated workflow for skin sensitization.

Data Gap Filling Automated workflow: Batch mode

- There are several ways to load a batch of chemicals amongst which:
- Selection of chemicals from databases/inventories;
- Loading of chemicals from user's file.

(see next slide)

List with chemicals (batch work)

Input: Ways of Entering a Chemical List

- Database
- Inventory
- List: Last used files/ From examples folder

Data Gap Filling Automated workflow: Batch mode

In this tutorial, <u>Query tool</u> functionality is used to load chemicals with known CAS RNs.

Data Gap Filling Automated workflow: Batch mode

Data Import Export 1 gather import import import import import Gather import import import import import Gather import import import import import import Gather import import import import import import Gather Decoments import import import import import Gather Decoments import import <th>qsi</th> <th>AR TOOLBOX</th> <th>+ r ▶ Input ▶ P</th> <th></th> <th>Category definition</th> <th>01010 01 0 10100 Data Gap Filling</th> <th>► Report</th> <th></th> <th></th> <th></th>	qsi	AR TOOLBOX	+ r ▶ Input ▶ P		Category definition	01010 01 0 10100 Data Gap Filling	► Report			
Outcomments Filter endpoint tree 1 [target] 2 3 4 Options Options Image: I	Data Gather	Import Export Export Import IUCLID6	1							
Options - Group by: Hazard effect * Structure Structure Structure info Parameters Physical Chemical Properties Physical Chemical Propertie	\odot	Documents		Filter endpoint tree		1 [target]	2	3	4	
Sort by: Name Color by: Target endpoi Image: Environment Canada Phys-chem EPISUTE Phys-chem EPISUTE Phys-chem EPISUTE Aquatic Costicological Information Aquatic Canada Aquatic Canada Aquatic Canada Phys-chem EPISUTE Ectoroxicological Information Aquatic Canada	Options . Group by	Databases	2	Structure		ч₅с∼	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		>	₩
 kid database Environment Canada Phys-chem EPISUITE S Ecotoxicological Information Aquatic CECTOQ Aquatic Coasis Ecotoxicological Information Aquatic Toxicity Avvistv Ecotoxicological Information Aquatic Toxicity Avvistv Ecotoxicological Information Aquatic Toxicity Avvistv Aquatic Coasis Ecotoxicological Information Aquatic Toxicity Avvistv Actionoterygii (ray-finned fishes,sp Pimephales promelas M: 25 (22.6+27.6) mg/L M: 25 (22.6+2	Sort by: Color by:	Name v		+ Structure info						
Ecotoxicological Information Aquatic ECETOC Aquatic Japan MoE Aquatic Japan MoE Aquatic Japan MoE Aquatic Japan MoE Aquatic Toxicity Aquatic		kM database Environment Canada Phys-chem EPISUITE		Parameters Physical Chemical P Environmental Eate	Properties and Transport					
Aquatic Japan Moe Aquatic Japan	🔺 🗹 Eo	otoxicological Information		Ecotoxicological Inf	ormation					
Aquatic OASIS CALL COMPACT CALL COMPACT C		Aquatic Japan MoE		Aquatic Toxicity		AW SW				
Input Image: Chord and invalid (animals) 1. Go to Data panel(1) Pimephales promelas 2. Theore to the conduct of the c	~	Aquatic OASIS			2>1.050					
1. Go to Data Pimephales promelas M: 5.15 mg/L M: 25 (22.6 ÷ 27.6) mg/L M: 114 mg/L panel(1) 96 h (123/316) M: 5.19 mg/L M: 25.1 mg/L M: 25.1 mg/L M: 225 mg/L 2. Those to Those to M: 5.19 mg/L M: 5.19 mg/L M: 25.1 mg/L M: 27 (93 ÷ 170) mg/L	Inp	out			(* LC50 lia (animals) lordata (chordates)] Actinopterygii (ray-finned fis	nes,sp				
panel(1) 96 h (123/316) M: 5.19 mg/L M: 25 (22.6+27.6) mg/L M: 114 mg/L W: 5.19 mg/L M: 5.19 mg/L M: 25 mg/L M: 27 (93+170) mg/L	1.	Go to Data		L L	- Pimephales promelas					
3011 (123/310) M 510 mg/		panel(1)			96 h	M: 5.15 M: 5.19 (123/316) M: 5.19	mg/L (4.73÷5.7) mg/L mg/L	M: 25 (22.6+ M: 25 mg/L M: 25.1 mg/	27.6) mg/L M: 1 M: 1 L M: 2	14 mg/L 27 (93÷170) mg/L 25 mg/L
2. Then to Database (2)	2.	Then to Database (2)			3011	T: 6.61 (2	mg/L 2.53÷17.3) mg/l		M: 4	70 mg/L
3. Select Aquatic	3.	Select Aquatic		Sediment toxicity	v					
OASIS	5.	OASIS								
database(3)		$\frac{OASIS}{database}(3)$								

Data Gap Filling Automated workflow: Batch mode

1.Go to <u>Input</u> panel; 2.Click on <u>Query</u>;3. A dialogue window pops up;4. Click on <u>Yes</u>.

Data Gap Filling Automated workflow: Batch mode

Data Gap Filling Automated workflow: Batch mode

- 1. Select *Data gap filling* tab (1);
- 2. Click on Automated (2);
- 3. Select *Ecotoxicological endpoint* (3) from the pop-up window (4);
- 4. Click on <u>OK</u> (5).

Data Gap Filling Automated workflow: Batch mode

A dialogue window gives the user a choice to select the endpoint (1);
Then select <u>OK</u> (2).

Elect of the select of the	ne			1		×
Aquation Which	toxicity data do you war n, LC50(EC50) at 9	i t to use? 6h for Pimepha	ales promelas (mortality)		
			2	ОК	Ca	ncel

Data Gap Filling Automated workflow: Batch mode

 A <u>Workflow</u> <u>controller</u> window appears, which is not active(1); • The pop-window Select range (2) is displayed where the user has to select the range of chemicals from the set, which has to be predicted; Finally press <u>OK</u> (3).

	1		
Workflow Controller [Automated mode]		_	×
Workflow name Ecotoxicological Endpoin General task Active task Pause Stop	ıt		
(Show activity log	Select range	×	
	Add range		
2	>= 1 <= 4 Ok 3		

Data Gap Filling Automated workflow: Batch mode

When the workflow finishes, there is an indication in the workflow controller(1).
Also the progress bar is completely filled (2).
The predictions are displayed on the matrix(3). There is also an indication that 4 out of 4 chemicals are predicted
Finally close the workflow window by pressing X button (4).

Filter endpoint tree	1	2	3	4
Structure	Hall	но	nogeouilea,	Hgc Con
Structure info				
CAS Number	62-53-3	90-01-7	110-40-7	5428-54-6
CAS Smiles relation	High	High	High	High
—— Chemical name(s)	aminobenzene	2-(hydroxymethyl)pł	Decanedioic acid, 1,1	2-methyl-5-nitrophe
Composition				
Molecular Formula	C6H7N	C7H8O2	C14H26O4	C7H7NO3
Predefined substance type	Mono constituent	Mono constituent	Mono constituent	Mono constituent
Structural Formula	Nc1ccccc1	OCc1ccccc10	CCOC(=0)CCCCCCCC(Cc1ccc(cc10)[N+]([O-])
+ Parameters				
Physical Chemical Properties				
Environmental Fate and Transport				
Ecotoxicological Information				
Aquatic Toxicity AW SW				
Generality				
Animalia (animals)				
Chordata (chordates)	3			
Actinopterygii (ray-finned fishes,sp	0			
Pimephales promelas				
96 h (4/4)	R: 28.3 (0.624÷1.29E+0)	T: 258 (44.1÷1.51E+03)	T: 2.05 (0.233÷18) mg/L	. T: 24.1 (7.76÷75.1) mg/
Sedimen Terrestri Workflow Controller [Finished workflow]			- 0	×
Human Heal Workflow name			Г	4
General task Performing primary an	d secondary profilers s	subcategorizations	L	·
Active task				
Pause Stop				
Show activity log			2	1
L			2	

Outlook

- Aim
- Automated workflow
- The exercise
- Report

Report Overview

- Report module could generate report of any of predictions performed with the Toolbox.
- Report module contains Wizard pages which navigate you through predefined and user-editable report templates.

Report Generation report

 Go to <u>Report</u> section; (2) Select the cell with the prediction; (3)Click on <u>Prediction.</u>

Report Generation report

• Select different levels to customize the information that is going to be shown in the report (1)

• Select <u>Create report (</u>2) to display the report

Customize report content and	appearance		-		×
Wizard pages	Select which sections to include into report by checking/unchecking the corresponding sectio Rearange sections order of appearance by using buttons "Move Up" and "Move Down".	n box.			
Customize report	✓ Target and prediction summary				
Target and prediction summary	Prediction details Prediction details Target profiles				
Prediction details	Analogues selection details				
Prediction details (II)	 ✓ Data for analogues ✓ Appendix: Grouping / subcategorization ✓ Appendix: Data pruning 				
Target profiles					
Analogues selection details					
Data for analogues					
Appendix: Grouping / subcategorization					
Appendix: Data pruning					
1		Move	2 ም	Move [Down
	Back Next	Cance	el	Create	report

Report Generation report

Two files (1) are generated, which can be selected from the Generated report files window (2) by clicking <u>Open (3);</u>

Report Overview

1

- The prediction report (1) is a PDF file;
- The execution of AW "Ecotoxicological Endpoint"
 (2) is included in the Prediction summary.

re: 28 Jul 2017 thor(s): Intact details: Target information Structural information Structural information Structure H3C	QSAR	Toolbox prediction for sin	ngle chemical
Target information Bructural Information Numerical identifiers Chemical names SMLES: EC#: N/A 1-aminooctane Structure CAS#: 111-86-4 1-octylamine Uther: N/A 1-octylamine HgCNH2 Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Jult/Scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint"	ate: 28 Jul 2017 athor(s): ontact details:		
Structural information Numerical identifiers Chemical names SMILES: SOUCCCCON EC#: N/A CAS#: 111-86-4 Other: N/A 1-aminooctane 1-octanamine Bructure Under: N/A 1-octaylamine H3CNH2 Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Juit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field lot provided by the user		Target information	
SMLES: EC#: N/A 1-aminooctane COCCCCCCN CAS#: 111-86-4 1-octylamine Structure 1-octylamine 1-octylamine H3C NH2 Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted ralue: 6.61 (from 2.53 to 17.3) Juit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Free Cotoxicological Endpoint	Structural information	Numerical identifiers	Chemical names
Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Jult/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field Not provided by the user	SMILES: CCCCCCCCN	EC#: N/A CAS#: 111-86-4 Other: N/A	1-aminooctane 1-Octanamine 1-octylamine
H3CNH2 Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Jnit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field tot provided by the user	Structure		
Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Jnit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field Not provided by the user	H ₃ CNH ₂		
Prediction summary Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Jnit/scale; mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field Not provided by the user			
Predicted endpoint: LC50; Mortality; Pimephales promelas; 96h; No guideline specified Predicted value: 6.61 (from 2.53 to 17.3) Jnit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field lot provided by the user		Desdiction summary	-
Predicted unspend cesof Horaling Principality pointedly sold no globaline specified Predicted value: 6.61 (from 2.53 to 17.3) Unit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field Summary: manually editable field	Predicted endpoint: LCS0: Mor	Freuicuori summary	No quideline specified
Unit/scale: mg/L Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: <i>manually</i> editable field Not provided by the user	Predicted value: 6.61 (from 2	.53 to 17.3)	
Data gap filling method: Trend analysis, executed via AW "Ecotoxicological Endpoint" Summary: manually editable field lot provided by the user	Unit/scale: mg/L		
Summary: manually editable field Not provided by the user	Data gap filling method: Trend	analysis, executed via AW "Ecoto»	ticological Endpoint"
	Summary: <i>manually editable fi</i> Not provided by the user	eld	

Report Overview

				-			
🔣 🛃 19 × (°1 × -			Microsoft Excel				– 🗆 🗙
File Home Insert Page Layout Form	ulas Data Review View Ado	I-Ins OASIS OASIS Acrobat					۵ (
Cut Calibri v 10		n Taut	Normal	ad Good Neut		🔂 🔚 Σ AutoSum * A	à.
Copy -		General		Good Neur		E E FII Z I I	
Paste B I U - 3	🤌 × 📐 👅 🚍 🗮 🏥 🏭 Mer	ge & Center 🔹 💲 👻 % , 號 🖧 🦉	onditional Format Check Cell E	Explanatory Input Linke	d Cell Note Insert	Delete Format Sort & Find	18
Clipboard 5 Font	Alignment	G Number G	ormatting * as Table *	Styles		Cells Editing	
	Alighteric	ia Humber ia		Syrca		Const	
Data matrix_28_7_1715_03_20.xlsx							_ 0 %
A B	C D E	F G H	I J K	L M N	O P Q	R S T	U V 🔺
1	Target chemical	Analogue #1	Analogue #2	Analogue #3	Analogue #4	Analogue #5	Analo
2 Substance identity							
Structure	H ₃ CNH ₂	H ₃ CNH ₂	H ₃ CNH ₂	H3C~~NH2	H ₃ C NH ₂	H ₃ CNH ₂	н ₃ с
Cate aurobas		7007 55 0	104.00.4	2000 24 2	112.20.0	440 50 7	2016
5 Chemical name	octylamine	Undervlamine	dodecvamine	Z805-34-3	Nonviamine	amulamine	decyl
6 Other identifier	octylumic	ondecynamine	uouccyamme	Thoceyrunnic	Nonyiannie	anyianne	uccyi
7 SMILES	CCCCCCCCN	CCCCCCCCCN	CCCCCCCCCCCN	CCCCCCCCCCCN	CCCCCCCCCN	CCCCCN	ccccc
8							
Parameters unit							
0							
1 Profilers							
Profiles used for grouping/subcategorization							
Aquatic toxicity classification by ECOSAR	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphati
	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete
Substance type (subcategorization)	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constitue
Acustic touisity description by 5000 AD	Organic	Organic	Organic	Organic Aliabatia Aminan	Organic	Organic	Org
Aquatic toxicity classification by EUOSAR	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphati
Acute equatic toxicity MOA by OASIS	Narcotic Amines	Narcotic Amines	Narcotic Amines	Narcotic Amines	Narcotic Amine	Narcotic Amines	Narcoti
Preside aquadre toxicity wide by deala	Aliphatic amine primary:	Aliphatic amine primary:	Aliphatic amine primary:	Aliphatic amine primary:	Aliphatic amine primary:	Aliphatic amine primary:	Aliphatic an
8 Organic functional groups (subcategorization)	Amine, primary	Amine, primary	Amine, primary	Amine, primary	Amine, primary	Amine, primary,	Amine
9 Structure similarity (subcategorization)	[90%.100%]	[80%.90%]	[80%.90%)	[70%.80%)	[90%.100%]	[80%.90%]	[90%.
0							(3070)
1 Measured and predicted data							
2 Data used for prediction							
environment endpoint 23 v	value unit species, duration, test type, type of method, assay, strain, test uideline, year, referen	value unit species, duration, test type, type of method, assay, strain, test guideline, year, referen Pimephales promelas	value unit species, duration, test type, type of method, assay, strain, test guideline, year, refereng Pimephales promelas	value unit yolue unit yolue unit yolue yolue of method, assay, strain, test yolue of method, assay, strain, test yolue yolue of method, assay, strain, test yolue of method, yolue of method,	value unit species, duration, test type, type of method, assay, strain, test w guideline, year, referen Pimephales promelas	value unit species, duration, test type, type of method, assay, strain, test guideline, year, referen Pimephales promelas	value unit ti value gui
	L	oc h	or h	OC b	OC h	oc h	

• The data matrix (1) is an *Excel* file, which contains information about the analogues.

Report Saving the prediction

• To save any of the two files, select the file (1) and then click on Save as (2).

Report Saving the prediction

• The report is saved as a *pdf* file (1) while the data matrix is saved as an *xlsx* file (2).

> 👝 Data (D:)	v
File <u>n</u> ame:	Prediction report.pdf
Save as <u>t</u> ype:	Pdf files (*pdf)
 Hide Folders 	Save Cancel

