QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Tutorial illustrating new options for grouping with metabolism

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow

Background

- Grouping with metabolism is a procedure for finding analogues accounting for metabolism activation of the chemicals;
- This is a step-by-step presentation designed to take the user through the new options for grouping with metabolism, implemented in QSAR Toolbox v.4.0.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow

Objectives

This presentation demonstrates a number of functionalities for searching of analogues accounting metabolism:

- Identify analogues based on the metabolites with:
 - common specific structure features;
 - common specific profiling results;
 - o common specific parameter results.
- Identify analogues based on the parent and metabolites package.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow

Specific Aims

• To familiarize the user with the map similarity options when define category with metabolism.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow

The Exercise

- In this exercise we will search for suitable analogues of 1,2-Ethanediamine (CAS# 107-15-3) for predicting of skin sensitization potential.
- The target chemical have no a protein binding alert for skin sensitization.
- Skin metabolism of target chemical will be accounted for.
- Different map similarity options will be applied for defining a category.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow

Workflow

- As you know the Toolbox has 6 modules which are typically used in sequence:
 - o Input
 - Profiling
 - o Data
 - Category Definition
 - Data Gap Filling
 - o Report
- In this example we will use only the first four modules, tailored to the aims of the example.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise
- Workflow
 - Input

Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation
- Drawing chemical structure
- Select from User List/Inventory/Databases

B.Group of chemicals

- User List/Inventory
- Specialized Databases

Input Screen Input target chemical by CAS#

Outlook

- Background
- Objectives
- Specific Aims
- The exercise

• Workflow

- Chemical Input
- Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Profiling the target chemical

- The actual profiling will take up to several seconds depending on the number and type of profilers selected.
- Including of metabolic simulator is more time consuming.
- The results of profiling automatically appear under the target chemical
- This result will be used to search for suitable analogues in the next steps of the exercise.

Profiling Profiling the target chemical

Profiling Profiling the target chemical

Profiling results for the target metabolites can be also retrieved.

Profiling Explain of profiling results

1. Right click over the found results and select *Explain* for more details. 2. Right click on the found alert and select *Display chemicals* to see for which structures alerts have been found; 3. The structures can be saved as *.smi* file. When you see them click on **OK**.

Outlook

- Background
- Objectives
- Specific Aims
- The exercise

• Workflow

- o Input
- \circ Profiling
- o Data

Data Overview

- "Data" refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox.
- Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).

Data Selecting databases

	Data Data Data	ling > Report
Data Import Export Data import UCLID6 IUCLID6		
Documents	Filter endpoint tree	1 [target]
▲ Document 1 # CAS: 107153	Structure	H ₂ NNH ₂
	Structure info	
	+ Parameters	
	Physical Chemical Properties Environmental Fate and Transport	
	Ecotoxicological Information	
	Human Health Hazards	
	Acute Toxicity	
Databases	Bioaccumulation	
Options 🖌	Carcinogenicity	
f Select All Unselect All Invert		
Micronucleus OASIS	Immunotoxicity	
REACH Skin sensitisation database (normalised)	Irritation / Corrosion	
Receptor Mediated Effects	Neurotoxicity	
Repeated Dose Toxicity HESS	Photoinduced toxicity	
Rodent Inhalation Toxicity Database	Repeated Dose Toxicity	·
Skin Sensitization	ToxCast	
Skin sensitization ECETOC	Toxicity to Reproduction	
Toxicity Japan MHLW	└── Toxicokinetics, Metabolism and Distribution	
	+ Profile	
Inventories		
f Select All Unselect All Invert		
Canada DSL Cossilia Dostrox	sitization and Skin se	ensitization ECETOC databases
ECHA PR		

Outlook

- Background
- Objectives
- Specific Aims
- The exercise

• Workflow

- o Input
- \circ Profiling
- o Data
- Category definition

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition.
- A category can be defined with and without metabolism.
- Grouping with accounting for metabolic transformation is a procedure for finding analogues accounting metabolism activation of the chemicals.

Category definition Sidebar on defining with metabolism

	Select metabolism	– 🗆 X	
	Options.	About _ Options	C About – 🗆 X
_	Sort by: Name ~		Name A
1	Color by: Endpoint sele ~ Legend		Short Description
' [Observed rat liver metabolism with quartitativ Observed Rat Liver S9 metabolism Simulated Simulated	re data •e data •egend × Endpoint selected in the data matrix	At The model predicts hydrolysis products of discrete organic chemicals under the following experimental conditions: notral or newly neutral applications and the standard structure of the standard structure and the structure structure structure and the structure structure and the structure structure and the structure stru
	Autoxidation simulator (alkaline medium)	Suitable	Disclaimer
	Hydrolysis simulator (acidic)	Plausible	Donator(s)
2	Hydrolysis simulator (basic)	Unclassified	Laboratory of Mathematical Chemistry (LMC), Bourgas, Bulgaria
27	Hydrolysis simulator (neutral)		Author(s)
	in vivo Rat metabolism simulator	ОК	Laboratory of Mathematical Chemistry (LMC), Bourgas, Bulgaria
	Microbial metabolism simulator		Website
	Rat liver S9 metabolism simulator		
L	Skin metabolism simulator Tautomorism		
	racomensii		
		OK Cancel	

All available transformation maps – documented (1) and simulated (2) in Toolbox can be used in the primary grouping. The maps are colored if a target endpoint is selected in the data matrix. Short description for each of the metabolic transformations can be seen by click on About.

When the transformation map is selected, the "Map similarity options" dialogue appears. It shows all the generated metabolites of the target chemical by the simulator that was preliminary selected. The dialogue has two subsections:

- First subsection (1) shows parent and each of the generated metabolites (by the preliminary selected metabolism simulator) is separate rows. This allows defining of different criteria for each of structures for finding analogues.
- Second subsection (2) is working with whole package "parent + metabolites", i.e. the criteria is provided for the whole package but not for separate metabolite.

A drop down menu (3) is available for each of the structures (in the column "Query") which allow setting the type of criteria for further looking for analogues.

See on the next slide.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Explanation of different options from the drop down menu:

- **None** default options; no criteria is set;
- Exact provides opportunity to search for metabolites in the analogues having exact to the specified metabolite structure; only available for the metabolites and the package "parent + metabolites" but not for the parent chemical;
- Parametric to have specific value or range of variation of defined parameter (a list with all parameters currently available in the Toolbox is provided);
- Profile to have specific category by selected profiler (a list with all profilers is provided);
- **Structural** to have specific similarity based on the atom centered fragments.

Different map similarity options will be examined.

Case 1: Searching of analogues based on a metabolite with defined profile

As you remember, structural alerts have been found for only two of the generated metabolites (*slide 21*).

The alerts are identical and therefore we can choose only one of the structures.

In order to find analogues based on metabolites with common profiling result, you have to follow the described steps below:

- On the row with the target metabolite select a query which you will use for searching. Select "**profile**" as a criteria for the third metabolite. New drop-down menu with all available profiles appears;
- 2. Select *Protein binding alerts for skin sensitization by OASIS* from the drop-down menu;
- 3. You can see the found alerts in the metabolite by click on the **Edit** button. If more than one alert is available, the user can select whether they will search analogues with all or only one of the alerts.
- 4. In this case there is only one structural alert and we click on **OK**.
- 5. When you are ready click on the **OK** button

See the illustrated steps on the next slide.

		0		– 🗆 X
[] Map similarity options				
All queries At least one		larget		
Chemical	Query Criteria	Schiff base formation		
Parent H ₂ NNH ₂	ne v No criteria.	Schiff base formation >> Schiff base Schiff base formation >> Schiff base Down	se formation with carbonyl cor se formation with carbonyl cor Up	npounds npounds >> Aldehydes Reset
		Drafilar		
Metabolite 1 NH3	ne v No criteria.	(N/A) Acylation Acylation >> (Thio)carbamoylation Acylation >> (Thio)carbamoylation Acylation >> (Chio)carbamoylation	n of protein nucleophiles n of protein nucleophiles >> Iso eophilic addition reaction	ocyanates, Isothiocyanates
Metabolite 2 OH H ₂ N	ne v No criteria.	Combine profiles Invert resul AND OR Strict	lt .	
Metabolite 3 H ₂ N	file v Profiler: Protein binding alerts for skin sensitization by OASIS v Options: Edit		4	OK Cancel
para	file All chemicals		_	
1 structure	ne v No criteria.			
		5 OK Cance	-	

235 analogues are found. You can return to the profiling section and to check whether the found structures correspond to the defined query.

Case 2: Searching of analogues with a common metabolite

With the "**Exact**" option the user can search analogues, which have a metabolite exactly the same as the selected.

Mar distribute attack				\sim	
e map similarity options				^	
All queries At least one					
Chemical	Query	Criteria		_	
Parent	none Y	No criteria.			
Metabolite 1 NH3	none ~	No criteria.			
Metabolite 2 H ₂ N	none v	No criteria.			Go to the metabolite of interest; Select the exact option from the drop-down menu (1) and click on OK (2).
Vetabolite 3	exact v none exact parametric profile	Matches exact structure.			
Parent & Metabolites	none ~	No criteria.			
		2	Can	cel	

One analogue is found in the selected databases.

To check whether the found structures correspond to the defined criteria, i.e. to produce the exact metabolite, you have to follow the steps:

1. Right click over the found structure and select "Set as new target";

QSAR TOOLBOX	► Input	► Profiling	► Data	Category definition	01010 01 0 10100 Data Gap Fil	ling Frepor			
Define Define with metabolism Subcategor	rize Combine								
Document 1 # CAS: 107153 Grouping with metabolism: 'Ski Grouping with metabolism: 'Ski	nts n metabolism simula ikin metabolis <u>m sim</u>	tor' ulator'	Structure			1 [target]	2		
			Structure info Parameters					(<u>@</u>) (<u>@</u>) (<u>@</u>)	Set as new target Edit and set as new target Chemical information
			Physical Chemical Environmental Fat Ecotoxicological I Human Health Haz	l Properties te and Transport nformation tards				<u>@</u>	Add in category Add target
			Acute Toxicity Bioaccumulati Carcinogenicit Developmenta	on y I Toxicity / Teratogenicity					Focus Query tool matrix Ctrl+F3 Set AOP target
			Genetic Toxicit Genetic Toxicit Immunotoxicit Fritation / Corr Neurotoxicity	ty y osion		· · · · · · · · · · · · · · · · · · ·			Сору

2. Right click over the new target and select:

Multiplication >> Metabolism/Transformations >> Skin metabolism simulator

	QSAR	TOOLBOX	► Input	► Profiling		Data	Category definition	01010 01 0 10100 ► Data Gap Filli	ng	► Report
	Define Define	Categorize	ze Combine							
	▲ Document ▲ # CAS: 10 ☐ Gro ☐ Gro 2 Set	Documer 1 7153 uping with metabolism: 'Skin uping with metabolism: 'Skin Export	nts metabolism simulai metabolism simulai " <mark>ism: 'Skin metab</mark>	tor' tor' olism simulator'	ilter endp	oint tree			1 [target]	NH
2		Print Rename Delete Delete All Lists Delete All But This			Structur Paramet Physica Environ Ecotoxic Human	e info ters I Chemical P mental Fate a cological Info Health Hazar	roperties and Transport ormation ds			
		Multiplication +	Metabolism Tautomerisr Target mult	/Transformations n iplication	•	Autoxidation Autoxidation Dissociation Hydrolysis si Hydrolysis si in vivo Rat m	simulator simulator (alkaline med simulator mulator (acidic) mulator (basic) mulator (neutral) ietabolism simulator	dium)		
	Options a f Select All Predefined Database Inventory OECD Hy Substanc US-EPA N a General Mee	Grouping me Unselect All Invert Affiliation Affiliation V Chemical Categories e type lew Chemical Categories chanistic	thods	Ê		Microbial me Observed Mi Observed Mi Observed Ra Observed Ra Rat liver S9 n Skin metabo	etabolism simulator ammalian metabolism icrobial metabolism t In vivo metabolism t liver metabolism with a t Liver S9 metabolism netabolism simulator lism simulator	quantitative data		

The OECD QSAR Toolbox for Grouping Chemicals into Categories

A parent list (1) (consists of the target structure and all generated metabolites) with six child lists (2) (for each of the metabolites) are created. You can see that the searched metabolite is there.

Case 3: Searching of analogues based on a metabolite with defined parameter value

With this option you can search analogues of the target chemical, which have metabolite(s) with defined parameter value.

When the parameter of interest is selected, it is automatically calculated for the current metabolite.

Map similarity options		-	_ ×	
All queries At least one				
Chemical Query	Criteria			
Parent H ₂ NNH ₂ none ~ No criteria.			^	
Metabolite 1 NH3 none v No criteria.				
Metabolite 2 OH H2N 0 criteria.				Go to the metabolite of interest; Select the parametric option from the drop-down menu (1). New calculator drop- down menu appears. Select log Kow (2).
Metabolite 3 H ₂ N-Calculator:	✓ = ✓ 0 Filter:			You can use and the filter option to find your parameter more quickly.
Metabolite 4	Koc (Log Kow) ^ Koc (MCl)			
Parent & Metabolites none 2	Log Koa (Air-water partition coefficient model) Log Koa (Henry's law constant model) Jog Kow logP Multicase LUMO Energy Maximum distance Maximum donor delocalizability Mean Melting Point Melting Point (Adapted loback Method)			
	Melting point (Gold and Ogle method) Molar refraction I Molar refraction I	ОК	Cancel	

Map similarity options			-		
All queries At least or	ne				
Chemical	Query	Criteria			
H ₂ N NH ₂	none v	No criteria.			
Metabolite 1 NH3	none ~	No criteria.			
Metabolite 2 H ₂ N	none ~	No criteria.			automatically for the Then the user can on the exact value.
Metabolite 3 H ₂ N	parametric ~	Calculator: log Kow * = * -1.64			mathematical symbols parameter values in a
Metabolite 4		2 All 2 als als			
Parent & Metabolites	none v	No criteria.			
			ОК	Cancel	

alue is calculated arget metabolite (1). ecide to search with o use any of the ols or to search range (2).

Map similarity options -	X
All queries At least one	
Chemical Query Criteria	
Parent H ₂ N- No criteria.	
Netabolite 1 NH3 none v No criteria.	We will select to search in a range (1). As you remember the calculated <i>logKow</i> value for the target metabolite is -1 64
	Therefore, we will search analogues, which have metabolite(s) with similar logKow values.
Metabolite 3 H ₂ N	In this example we define a range from - 1.6 to - 1.68 (2). Click on OK to execute the search.
Metabolite 4	
All chemicals	
Parent & Metabolites none v No criteria.	
OK Care	Note: It will take up to several minutes if you make this example for first time.

27 analogues are found in the selected databases. Each of these structures posses metabolite(s) with logKow value in the previously defined range.

	Data Category diffition Data	Iling • Report							The OECD QS/ for Grouping C	R Toolba
Define Define with metabolism Subcategorize Combine Documents	Filter endpoint tree	1 [target]	2	3	4	5	6	7	Developed by	LMC, BL
\$ \$ Care 3 # CAS: 107153 # CAS: 107153 Grouping with metabolism: "Skin metabolism simulator"	Structure	H ₂ NNH ₂	Not Not	e nj-m	H3C OH	, core	7	s <u>t</u>	- Joc	-
Grouping methods Cyclons Cycl	Structure info Parameters Physical Chemical Properties Ecotoxicological Information Carcinogenicity Developmental Taxie and Transport Carcinogenicity Developmental Taxie / Teratogenicity Genetic Toxicity Intrintation / Corrosion Neurotoxicity Photoinduced toxicity Sensitisation AW SW AOP(27/56) ToxCast Toxicity to Reproduction Profile	M: Ambiguous	M: Positive	M: Positive	M: Negative	M: Positive	M: Positive	M: Negative	M: Positive	M: Pc
Hydrolysk mei in (Uku při / July and Miller) Hydrolyski falfel (Ka, při / July and Miller) Bedrolucie halfalfe (Kih nul 7VBadroum)	¢									

Case 4: Searching of analogues based on similar metabolites

We can search for analogues of our target chemical, which have metabolites structurally similar to the defined one.

1. Select **structural** option from the drop-down menu for the target metabolite;

- 2. The default settings could be seen by click on the **Options** button.
- 3. Close the window by **X** button;
- 4. Define the similarity threshold.

See the illustrated steps on the next slide.

	Similarity options		– – ×
Map similarity options	Measure	Molecular features	Calculation
All queries At least one	Tanimoto (Jaccard) Disc	Atom pairs	<u>_</u> <u>_</u> <u>_</u> <u>_</u>
Chemical Query Criteria	O Kulczynski-2	Topologic torsions	Fingerprint
Parent H ₂ NNH ₂ none v No criteria.	⊖ Ochia(Cosine) ⊖ Yule	Atom centered fragments Path Cycles PubChem features Options	Average by features Combine all features
Metabolite 1 NH3 none ~ No criteria.	Formula $\frac{c}{0.5\left[(a+b)+(b+c)\right]}$ Description	Description The atom-centered fragment is a topological sphere with center a selected atom and radius specified in Any atom distance . For aromatic carbon as a center of the sphere is assumed the aromatic system that contains this atom of concern.	Atom characteristics Image: Atom type Image
Metabolite 2 OH Hall OH Hall OH Hal	Example A 1	B C 2 10	Charge Cyclic
Metabolite 3	Similarity = 83.33	3% Details	Default Help
Metabolite 4 1 chemicals		2	OK Cancel
Parent & Metabolites none No criteria.			
ок	Cancel		

Map similarity options	– 🗆 🗙	
All queries At least one		
Chemical Query Criteria		
Parent H ₂ NNH ₂ none v No criteria.		
Netabolite 1 NH3 No criteria.		
Metabolite 2		1.Select structural option from the drop-down menu;2. Define similarity threshold of ≥50%
Metabolite 3 H₂№Similarity ≥ 50 % Options		according to the default options; 3. Click on OK to execute the query.
Metabolite 4		
Parent & Metabolites none No criteria.		
3		
	OK Cancel	

15 analogues are found in the selected databases. Each of them posses metabolite(s) similar 50% or more to the structure of the previously selected metabolite.

	Data Data Data	Iling Freport						
Categorize								
Documents	Filter endpoint tree	1 [target]	2	3	4	5	6	7
	Structure	H ₂ NNH ₂		Horsen and Action			~~	~~~
Crouping methods Cptions Crouping methods Cptions Council and the second	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity Intrilation / Corrosion Neurotoxicity Bensitisation Neurotoxicity Sensitisation Network ACP (15/43) ToxCast Toxickinetics, Metabolism and Distribution Profile		M: Positive	M: Negative	M: Positive	M: Positive	Mt Positive	M: Positive
15								

Case 5: Searching of analogues based on defined criteria for the package "target and metabolites"

The user can select a profiling, parametric or structural query for both – target and its metabolites.

In this example we will search only for analogues with defined profile.

- 1. Select a profile option for the package "parent & metabolites";
- 2. Select *Protein binding alerts for SS by OASIS* profile;
- 3. Click on the **Edit** button. All found alerts in the parent structure and its metabolites are shown.
- 4. Check "**strict**" option to search only analogues with exact match these alerts.
- 5. Click on "**OK**" button to confirm the defined searching criteria.
- 6. Click on "**OK**" button in the general Map similarity options window to execute the search.

See the illustrated steps on the next slide.

	0			- 🗆	×		
Map similarity options	Target						
Il queries Al least one	No alert found				\sim		
Chemical Query Criteria	Schiff base formation						
Parent H ₂ NNH ₂ none ~ No criteria.	Schiff base formation >> Schiff base formation with carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldel ~ >						
	Down	Up	Reset	Options	s		
Metabolite 1 NH3 none v No criteria. Metabolite 2 H2V Got none No criteria. 2 emicals 3 Profiler. Protein binding alerts for skin sensitization by OASIS v Ontions. Edit	Profiles (N/A) Acylation Acylation >> (Thio)carbar Acylation >> (Thio)carbar Acylation >> (Thio)carbar Acylation >> Acyl transfer Combine Combine And OR	moylation of prote moylation of prote er via nucleophilic a nucleophilic a nucleophilic a nucleophilic a	in nucleophiles in nucleophiles >> lsc iddition reaction	cyanates, Isoti	hior >		
Parent & Metabolites profile			ОК	Car	ncel		
			>				
	[6					
		ОК	Cancel				

10 structures are retrieved. Only the searched structural alerts are found either in the parent structure or in the structures of its metabolites.

	bata bata	► Report				X 0 5 0 0
Categorize						The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, <u>Bulgari</u>
Documents	Filter endpoint tree	1 [target] 2		3	4	5 /
 ▲ Â Case 5 ★ # CAS: 107153 ☐ Grouping with metabolism: 'Skin metabolism simulator' 	Structure	H ₂ NNH ₂	NH NH	H3C NH2	24 E	zéréc
	Structure info Parameters Physical Chemical Properties					
	Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity					
	Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity	·				
Grouping methods	Genetic Toxicity Immunotoxicity Irritation / Corrosion Nonconstanticity	·				
F Select All Unselect All Invert Predefined Database Affiliation	Photoinduced toxicity Repeated Dose Toxicity Repetition AW CW ACC (2012)	Mi Ambinuour A	4: Positive	M: Poritive	M: Poritive	M: Negative
Inventory Affiliation OECD HPV Chemical Categories Substance type US EDD Nuu Chemical Categories	ToxCast Toxicity to Reproduction		n. rustuve	IVI. FUSITIVE	w. rostuve	in negative
General Mechanistic Biodeg BioHC half-life (Biowin) Biodegradation primary (Biowin 4)	Profile Endpoint Specific Destrict bisding alors for aking any first interview.	No alast faunal	le sloet ferred	No slast found	Cabiff base ferrer -**	No sloot found
Biodegradation probability (Biowin 1) Biodegradation probability (Biowin 2) Biodegradation probability (Biowin 5) Biodegradation probability (Biowin 6)	Protein binding alers for skin sensitization Metabolism/Transformations Skin metabolism simulator _ Endnoist Specific	5 metabolites 6	i metabolites	12 metabolites	23 metabolites	19 metabolites
Biodegradation probability (Biowin 7) Biodegradation ultimate (Biowin 3) DNA binding by OASIS DNA binding by OACD Ofference Becarter Biodian	Protein binding alerts for skin sensitiza	1 x Schiff base forma 1 1 x Schiff base forma 1 2 x Schiff base forma 2	x Schiff base forma x Schiff base forma x Schiff base forma	1 x Schiff base forma 4 x Schiff base forma 5 x Schiff base forma	10 x Schiff base form 14 x Schiff base form 14 x Schiff base form	1 x Schiff base forma 11 x No alert found 7 x Schiff base forma
						×

The OECD QSAR Toolbox for Grouping Chemicals into Categories

July, 2017

Case 6: Searching of analogues based on combination of queries

The user can search for analogues with combination of different criteria for each of the metabolites as well as the parent structure.

Note: The user can search for analogues based on any of the target characteristics (profiling result, parameter value or structural similarity) and at least one other criteria for a metabolite.

If a criteria is set for the parent structure only, informing message will appear:

Case 6: Searching of analogues based on combination of queries

In addition the Toolbox user can select whether all defined queries to be searched together (1) or at least one of them (2).

Now we will search for structures which have simultaneously:

- Parent structure similar to the target structure;
- Exact metabolite structure;
- Metabolite with defined profile.

Map similarity options	– 🗆 X	
● All queries ○ At least one		
Chemical Query	Criteria	
H2N Similarity 2 50 % Op	ions	
Metabolite 1		1. Select structural option from the drop-
NH3		threshold with default options;
Metabolite 2		2. Select exact option from the drop-down
H ₂ N		3. Select profile option and <i>Protein binding</i>
Metabolite 3 3		alerts for skin sensitization by OASIS profile
H ₂ N Profile Profiler. Protein binding alerts for s	in sensitization by OASIS v Y Options: Edit	from the drop-down menus for the third metabolite.
		4. Click on OK to execute the search.
All chemicals	~	
Parent & Metabolites none Vocriteria.		
L L		
	4	
	OK Cancel	

Three analogues which fulfill all requirements are found.

QSAR TOOL	вох	F ► Input	► Profiling	► Data	Category definition	01010 01 0 10100 Data Gap Filling	► Report			X 0 5 6 0
Categori	ze	Correlation of the second								The OECD QSAR Toolbc for Grouping Chemicals into Categories
Define Define with metabolish	n subcategori	ze Combine		Filter and raint	.		1 [taunat]	2	2	Developed by LMC, Bul
▲ Case 5 ▲ # CAS: 107153 ☐ Grouping with m	Docur etabolism: 'Sk	nents in metabolism sim	ulator	Structure			H ₂ N NH ₂	11_21101101_2		
				+ Structure ini + Parameters + Physical Ch + Environmen + Ecotoxicolo	fo emical Properties tal Fate and Transport gical Information the Ucacada	(403)		Mi Naastiya 🖉	M. Dariting	Mi Nagating 10
				Profile		(4/33)	M. Anolguous	W. Negative	Wi. Positive	
Options Options F Select All Unselect A Predefined Database Affiliation Inventory Affiliation OECD HPV Chemical Cat Substance type US-EPA New Chemical C General Mechanistic Biodegradation probabilit Biodegradation probabilit Biodegradation probabilit Biodegradation probabilit Biodegradation probabilit	Grouping II Invert egories ategories owin) Biowin 4) cy (Biowin 4) cy (Biowin 1) cy (Biowin 5) cy (Biowin 6)	methods	~	<						
4										

Recap

In short, grouping with metabolism in Toolbox 4.0 allows finding analogues that have:

- metabolite with defined profile
- exact metabolite
- metabolite with defined parameter value
- metabolite similar to defined one
- parent and its metabolites with defined profile, parameter value or structural similar
- combination of above

Congratulation

- You have now been familiarized with different map similarity options for grouping with metabolism.
- Note proficiency comes with practice.