QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Step-by-step example of how to evaluate an ad-hoc category of aliphatic amines and to predict an ecotoxicological endpoint

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox for evaluating of an ad-hoc category.
- You will learn several new functionalities which we be repeated to assure a consistent category is defined.
- It is assumed that you now have some experience in using the Toolbox so there will be multiple key strokes between screen shots.

- Background
- Category evaluation overview

Category Evaluation Two phases of evaluation process

<u>Phase I.</u> Evaluation of Category & Data Gap Filling:

- Investigating the structural consistency of an ad hoc category (e.g., a category submitted by an industry consortium to a regulatory assessment program).
- Implementation of an ad hoc category building and data gap filling.

Phase II. Extension of Category & Data Gap Filling:

- Search for other analogues which are consistent with the submitted category.
- Data gap filling using new data matrix.

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category Case Study

- The submission consists of a category with 19 aliphatic amines.
- The predicted ecotoxicological endpoint EC50, 48h, D.magna of 2-Butanamine(CAS 13952-84-6) will be reviewed.

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study
 - Workflow

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow*

The following input workflow is used:

- Input the file for submission as an user list.(In this case input file Aliphatic amines.smi*)
- Evaluate the category applying the following profiling schemes:
 - US-EPA New Chemical Categories
 - Aquatic toxicity classification by ECOSAR
 - Aquatic toxicity MOA of action
 - Organic functional groups (nested)

Aliphatic amines.smi* - file is available with TB installation, located at C:\Program Files (x86)\Common Files\QSAR Toolbox 4.1\Config\Examples

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study
 - Workflow
 - Input

Step 1. Investigating the structural consistency of an ad hoc

category Workflow/Input

QSAR TODLEDX	Imput ► Profiling ► Data ► Categoon	definition	X 0 * * 0
Document	Single Chemical	Chemical List	Target The OECD QSAR Toolbox
	🏼 💷 🦘 🤰 🖏 - 📟		into Categories
New Open Close Save	CAS# Name Structure Composition Select Delete ChemID:	5 Database Inventory List Substructure (SMARTS) Query De Developed by IMC Bulgar
Desuments	Open	×	> Sectospect by Elle, bugu
Document 1	← → ✓ ↑ _ « QSAR Toolbox 4 → Config → Examples	マ ひ Search Examples ク	
	Organize 🔻 New folder	III - III ()	
	▲ Name	Date modified Type Si	
	✤ Quick access 12 amines	8/29/2007 7:27 AM SMI File	
	Desktop 🖈 🦳 Acyl halides	10/8/2008 5:53 PM SMI File	
	Downloads Acyl halides_1	10/9/2008 9:53 AM SMI File	
	🗐 Documents 🖈 🧊 Aldehyde analogues	10/9/2008 9:42 AM SMI File	
	📰 Pictures 💉 🥼 Aldehyde analogues_1	10/22/2008 10:23 SMI File	
	E_Petkowa	6/29/2011 4:30 PM SMI File	
	issue 02 2017	10/8/2008 3:01 PM SMI File	
	Alkyl ethers_1	5/1/2009 1:31 PM SMI File	
	Example_file_AW_SW_Ecotox	6/23/2017 4:23 PM SMI File 2	
	Example_file_AW_SW_Skin_sens	6/23/2017 4:27 PM SMI File	
	CneDrive and di-methyltins	10/12/2006 2:48 PM SMI File	
	Multifunctional acrilates and methacrylat.	1/3/2008 6:15 PM SMI File	
	OECD Mock Inventory	2/15/2017 2:21 PM SMI File	
	Phenols_EPA	8/29/2007 9:27 AM SMI File	
	Documents Phenols_EPA_short	8/29/2007 7:27 AM SMI File	
	Downloads	1/3/2008 5:03 PM SMI File	
	Music	2/24/2017 1:37 PM SMI File	

1. Click the List; 2. Browse and find the file for input; 3. Open the file.

	File name: Aliphatic amines All supported formats Open Cancel	
	0/100 ×	

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Input*

- You have now inserted your chemical list into the system.
- Click on the box next to "Structure info"; this displays the chemical identification information (see next screen shot).

Step 1. Investigating the structural consistency of an ad hoc

category Workflow/Input

New Open Close Save CAS#	📔 🏧 🦂 🖉 🛄 - 📟 📕			Search	Target The OE	CD QSAR Toolbox
Documents	E Name Structure Composition Select Delete Cher		-	¥ Y	for Gro into Ca	uping Chemicals regories
Documents		nIDs Database Inventor	y List Substri	icture (SMARTS) Query	y De Develop	ed by LMC, Bulga
	Filter endpoint tree	1	2	3	4	5
Document 1 Aliphatic amines	Structure	H ₃ C NH ₂	H ₃ C NH ₂	HgC /4Hg	H ₃ C NH ₂ CH ₃	H ₃ C
	Structure info					
	CAS Swiles relation	109-73-9	74-89-5	75-04-7	75-31-0	75-64-9
	CAS Smiles relation Chemical name(s)	1-amino-butane	amino-methane	amino-ethane	2-amino-propane	(tert)butylamine
	Composition					
	Molecular Formula	C4H11N	CH5N	C2H7N	C3H9N	C4H11N
	Predefined substance type Structural Formula	Mono constituent	Mono constituent	Mono constituent	Mono constituent	Mono constitue
	Structural Formula F Parameters		CN	CON	CC(C)N	
	Physical Chemical Properties					
	Environmental Fate and Transport					
	Ecotoxicological Information					
	1. Click on	"Struct	ure inf	0″	·	

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study
 - Workflow
 - Input
 - Profiling

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Profiling*

- The first step of the category evaluation according to Phase I is the consistency check of the category which starts with evaluation of the robustness with respect to structural functionalities. The following schemes could be used for this purpose:
 - US-EPA New Chemical Categories
 - Aquatic toxicity classification by ECOSAR
 - Aquatic toxicity MOA of action
 - Organic functional groups (nested)
- Select "profiling methods" by clicking on the boxes before the names of the profilers and Click "Apply". Before selecting the profiling methods unselect all (see next screen shot).

Step 1. Investigating the structural consistency of an ad hoc

category Workflow/Profiling

QSAR TOOLBOX	input Profixed > Data > Cater	ory definition Data G	ap Filling ► Rep	Dort	× e ·	5 e 🗊
Profiling Custom profile	1				The OEC for Grou into Cate	D QSAR Toolbox ping Chemicals gories
Apply View New Delete					Develope	ed by LMC, Bulgaria
 Documents 	Filter endpoint tree	1	2	3	4	5 ^
 À Document 1 Aliphatic amines 	Structure	H ₃ C NH2	H ₃ C NH ₂	HgC841y	H ₃ C CH ₃	H ₃ C
	Structure info					
	CAS Number	109-73-9				
	— CAS Smiles relation	High				
	Chemical name(s)	1-amino-butane	amino-methane			
	Composition		0.000			
	Molecular Formula	C4HTIN	CH5N Mana constituent	Mana constituent		
Profiling methods	Predefined substance type Structural Formula	CCCCN	CN	CCN		
Options 🖌	Parameters					
f Select All Unselect All Invert	Physical Chemical Properties					
Eve irritation/corrosion E	Environmental Fate and Transport					
Eye irritation/corrosion 1	Ecotoxicological Information					
in vitro mutagenicity (A 🥠 ert	+ Human Health Hazards					
in vivo mutagenicity (Mi ale						
Oncologic Primary Classification						
Protein binding alerts for Chromosoma						
Protein binding alerts for skin sensitiza						
Metabolism/Transformations						
f Select All Uncelect All Invert						
A Documented						
Observed Mammalian metabolism						
Observed Microbial metabolism						
Observed rat liver metabolism with gu						
Observed Rat Liver S9 metabolism						
Simulated Autovidation simulator						
Autoxidation simulator (alkaline mediu						
Dissociation simulator						
📩 1. Go to pro	ofiling; 2. Select	Unsele	ct All.			

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step 1. Investigating the structural consistency of an ad hoc

category Workflow/Profiling

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Profiling*

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appeared as a dropdown box under the target chemical.
- The result from profile statistics, can be seen by right clicking in the space above the profiler in the endpoint tree and select Profile statistics from the dropdown menu (see next screen shot).

Step 1. Investigating the structural consistency of an ad hoc

category Workflow/Profiling

Step 1. Investigating the structural consistency of an ad hoc

category

Workflow/Profiling/Statistics according to US-EPA

1. In this case all 19 chemicals are Aliphatic amines according to US-EPA profiler.

Step 1. Investigating the structural consistency of an ad hoc category

Workflow/Profiling/<u>Statistics according to Aquatic toxicity</u>

Step 1. Investigating the structural consistency of an ad hoc category

Workflow/Profiling/Statistics according to ECOSAR

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category

Workflow/Profiling/Statistics according to OFG(nested)

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Recap*

• Chemicals are defined as:

- Aliphatic amines (broader category than primary amines)
 US-EPA categories, ECOSAR classification
- The statistics of organic functional groups provide detailed alert description of all 19 structures. However, all 19 chemicals have aliphatic amines fragment.
- It could be concluded that the category is consistent with respect to structural functionalities (chemicals are empirically similar).

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - <u>Step 2</u>: Investigating the applicability domain of an ad hoc category.

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category

- Boundaries of structural functionalities
 - Aliphatic amines
- Parametric boundaries
 - log Kow (from 0.64 to 7.71)
 - Molecular weight (from 31 to 269 Da)
 - Water solubility (from 0.48×10^{-1} to 1×10^{6} mg/l)

You are now ready to extract the 2D and/or 3D parameters (see next screen shot).

Phase I: Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category

Extracting 2D and 3D parameters

QSAR TOOLBOX	► Input ► Profiling ► Data ► Cat	egory definition > Data G	010 i100 Fap Filling ► Rep	ort	× o 1	\$
Profiling Custom profile					The OEC for Grou into Cate	D QSAR Toolbox ping Chemicals egories
	Eilter and point tree	1	2	2	Develop	ed by LMC, Bulgaria
Documents Drolling methods Options # f Select All Unselect All Invert Ø Predefined	Structure	H ₃ C NH ₂	H3C NH2	11/2~1812	H ₃ C NH ₂	H ₃ C
Database Affiliation Inventory Affiliation OECO HPV Chemical Categories Substance type VIUS-EPA New Chemical Categories Concert Machanistric	Structure info CAS Number s relation ame(s)	109-73-9 High 1-amino-butane	74-89-5 High amino-methane	75-04-7 High amino-ethane	75-31-0 High 2-amino-propane	75-64-9 High (tert)butylamine
Biodegradation primary (Biowin 4) Biodegradation primary (Biowin 4) Biodegradation probability (Biowin 1) Biodegradation probability (Biowin 2) Biodegradation probability (Biowin 5)	pn Formula Predefind substance type Structural Formula	C4H11N Mono constituent CCCCN	CH5N Mono constituent CN	C2H7N Mono constituent CCN	C3H9N Mono constituent CC(C)N	C4H11N Mono constitue CC(C)(C)N
Biodegradation probability (Biowin 6 Biodegradation probability (Biowin 7) Biodegradation ultrnate (Biowin 3) DNA binding by OECD Extreme Recents Binding	(Q) Basic pKa (Chemaxon)	Not calculated Not calculated Not calculated				
Hydrolyss half-life (Ka, pH 7)(Hydrown Hydrolyss half-life (Ka, pH 8)(Hydrown Hydrolyss half-life (Ka, pH 8)(Hydrown Hydrolyss half-life (Kb, pH 8)(Hydrown Hydrolyss half-life (Kb, pH 8)(Hydrown Hydrolyss half-life (Kb, pH 8)(Hydrown	BAF (lower trophic) BAF (mid trophic) BAF (upper trophic) BAF (upper trophic, biotransformation rate is	Not calculated Not calculated Not calculated Not calculated				
Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4	BCF BCF (lower trophic) BCF (mid trophic)	Not calculated Not calculated Not calculated Not calculated				
1. Double click on the b open the nodes with 2D/3	DOX 🛨 to biotransformation rate is D Biowin 1)	Not calculated Not calculated Not calculated				
parameters.	Biowin 2) Biowin 5) Biowin 6)	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated
Acute aquatic toxicity MOA by OASIS Acute advantage of the second seco	BioHC Half-Life Biotransformation Half-Life Boiling point	Not calculated Not calculated Not calculated				
19						×

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category

Extracting 2D and 3D parameters

1. **Right click** above the parameter in the endpoint tree; **2**. The user can calculate all parameters or extract current parameter for all chemicals in the current row. **3**. In this exercise calculate all (2D) parameters.

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category <u>Extracting 2D and 3D parameters - results</u>

OSAR Toolbox 4.0	0.0.28533 [Document 1]								0 ×
QSAR 1	TOOLBOX	↓ Input	r 1 L J ▶ Profiling	► Data ► Cate	gory definition Data G	010 0 100 iap Filling > Rep	ort	Xe	s & 3
Profiling	Custom profile							The OEC for Grou into Cat	CD QSAR Toolbox uping Chemicals egories
Apply view	New Delete		1.1.1			2		Develop	ed by LMC, Bulg
≥	Documents	Filte	er endpoint tree			2	5	4	2
Options ▲ f Select All ✓ Predefined	Profiling methods Unselect All Invert	Str	ucture		H ₃ C NH ₂	H ₃ C NH ₂	HgCNHj	H ₃ C NH ₂ CH ₃	H ₃ C
Database	e Affiliation	🖵 S	tructure info						
OECD H	V Chemical Categories		– CAS Number		109-73-9	74-89-5	75-04-7	75-31-0	75-64-9
Substan	ce type		- CAS Smiles relation		High	High	High	High	High
General Me	New Chemical Categories		 Chemical name(s) 		1-amino-butane	amino-methane	amino-ethane	2-amino-propane	(tert)butylamin
Biodeg E	lioHC half-life (Biowin)		- Composition			01151	0011711	6211011	0.000
Biodegra	dation primary (Biowin 4)		- Molecular Formula		C4HTIN	CHON	C2H/N	C3H9N	C4HTIN
Biodegra	dation probability (Biowin 1)		 Predefined substance type 	pe	Mono constituent	Mono constituent	Mono constituent	Mono constituent	Mono constitu
Biodegra	dation probability (Biowin 5)		- Structural Formula			CN	CCIN	CC(C)N	CC(C)(C)N
Biodegra	dation probability (Biowin 6)								
Biodegra	dation probability (Biowin 7)		(O) Acidic pKa (Chom	aron)	Novalue	Novalue	Novalue	No value	Novalue
DNA bin	ding by OASIS		(Q) Actuic pKa (Chem	axon)	No value	No value	No value	No value	No value
DNA bin	ding by OECD				0.25 log(L/kg bdwt)	-0.04 log(L/kg bdwt)	-0.02 log(L/kg.bdwt)	0.02 log(l /kg bdwt)	0.05 log(1/kg t
Estroger	Receptor Binding		BAF (lower trophic)		0.168 log(L/kg bdwt)	-0.02 log(L/kg bdwt)	-0.008 log(L/kg bdwt)	0.018 log(L/kg bdwt)	0.035 log(L/kg
Hydrolys	is naif-life (Ka, pH 7)(Hydrowi is half-life (Ka, pH 8)(Hydrowi		BAF (mid trophic)		0.186 log(L/kg bdwt)	-0.023 log(L/kg bdwt)	-0.01 log(L/kg bdwt)	0.019 log(L/kg bdwt)	0.038 log(L/kg
Hydrolys	is half-life (Kb, pH 7)(Hydrowi		BAF (upper trophic)		0.25 log(L/kg bdwt)	-0.039 log(L/kg bdwt)	-0.02 log(L/kg bdwt)	0.023 log(L/kg bdwt)	0.052 log(L/kg
Hydrolys	is half-life (Kb, pH 8)(Hydrowi	i i	BAF (upper trophic, b	piotransformation rate is	0.28 log(L/kg bdwt)	-0.035 log(L/kg bdwt)	-0.012 log(L/kg bdwt)	0.037 log(L/kg bdwt)	0.066 log(L/kg
Hydrolys	is halt-life (pH 6.5-7.4) n at nH = 1		BCF		0.5 log(L/kg bdwt)	0.5 log(L/kg bdwt)	0.5 log(L/kg bdwt)	0.5 log(L/kg bdwt)	0.5 log(L/kg b
Ionizatio	n at pH = 4		BCF (lower trophic)		0.168 log(L/kg bdwt)	-0.02 log(L/kg bdwt)	-0.008 log(L/kg bdwt)	0.018 log(L/kg bdwt)	0.035 log(L/kg
🔤 Ionizatio	n at pH = 7.4		BCF (mid trophic)		0.186 log(L/kg bdwt)	-0.023 log(L/kg bdwt)	-0.01 log(L/kg bdwt)	0.019 log(L/kg bdwt)	0.038 log(L/kg
Ionizatio	n at pH = 9		BCF (upper trophic)		0.25 log(L/kg bdwt)	-0.039 log(L/kg bdwt)	-0.02 log(L/kg bdwt)	0.023 log(L/kg bdwt)	0.052 log(L/kg
Protein	binding by OKSIS		BCF (upper trophic, b	piotransformation rate is	0.277 log(L/kg bdwt)	-0.035 log(L/kg bdwt)	-0.012 log(L/kg bdwt)	0.036 log(L/kg bdwt)	0.065 log(L/kg
Protein l	pinding potency		Bio Half-Life		0.215 d	0.0724 d	0.0963 d	0.125 d	0.175 d
Protein t	pinding potency Cys (DPRA 1)	5	Biodeg probability (B	iowin 1)	0.975	0.887	0.88	0.873	0.683
Toxic ba	zard classification by Cramer		Biodeg probability (B	iowin 2)	0.993	0.975	0.97	0.964	0.795
Toxic ha	zard classification by Cramer (Biodeg probability (B	iowin 5)	0.677	0.653	0.661	0.52	0.597
🔺 🗹 Endpoint S	pecific		Biodeg probability (B	iowin 6)	0.808	0.796	0.8	0.616	0.643
Acute a	Juatic toxicity classification by mustic toxicity MOA by OASIS		 Biodeg probability (B 	iowin 7)	0.694	0.934	0.96	0.688	0.44
	Autor concicy MON by OASIS		BioHC Half-Life		No value	No value	No value	No value	No value
	,		Biotransformation Ha	lf-Life	0.215 d	0.0724 d	0.0962 d	0.125 d	0.175 d
 Metal 	bolism/Transformations		⊢— Boilina point		187.7 °C	10.2 °C	36.9 °C	47.3 °C	62.8 °C

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - <u>Step 2:</u> Investigating the applicability domain of an ad hoc category.
 - <u>Step 3:</u> Reading data for the analogues

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data

- Next, the Data matrix is constructed by extracting available experimental results for all 19 members of the category.
- Based on preceding category evaluation, no outliers have been identified violating the structural and mechanistic consistency of the category.

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data

	→ Frofiling → Data → Categor	010 01 101 Iny definition ► Data Ga	ap Filling > Repo	rt	Xer	h e 🗉
Data 2 ort Export					The OECI for Group into Cate	D QSAR Toolbox bing Chemicals gories
Gather Import IUCLID IUCLID6		1			Develope	d by LMC, Bulgaria
 Documents 	Filter endpoint tree	1	2	3	4	5 ^
Options	Structure	H ₃ C NH ₂	H ₃ C _{NH2}	HgCNMHg	H ₃ C NH ₂ CH ₃	H ₃ C
Environmental Fate and Transport Ecotorypological Information	Structure info					
Aquat c ECETOC	CAS Number	109-73-9	74-89-5	75-04-7	75-31-0	75-64-9
🗸 Aquati Japan MoE	CAS Smiles relation	High	High	High	High	High
Aquati OASIS	Chemical name(s)	1-amino-butane	amino-methane	amino-ethane	2-amino-propane	(tert)butylamine
	Composition					
n t	Molecular Formula	C4H11N	CH5N	C2H7N	C3H9N	C4H11N
• Main Health Hazards	Structure [] Read data?			Mono constituent	Mono constituent	Mono constitue
			3 –	CCN		
	Physical Che All endpoints O Choose frc	m Tautomers				
	Ecotoxicolog	ОК	Cancel			
	Human Healur Hazarus					
	Profile					
Inventories						
Options	US-EPA New Chemical Categories	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amine
f Select All Unselect All Invert	Endpoint Specific					
Canada DSL	Acute aquatic toxicity MOA by OASIS	Narcotic Amine	Narcotic Amine	Narcotic Amine	Narcotic Amine	Narcotic Amine
DSSTOX	Aquatic toxicity classification by ECOSAR	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amine
ECHA PR		Aliabetic entire of 1	Allahatis anias a 1	Allahadia amina a 1	Allahatis antisa a 1	Allahatis and
	Organic functional groups (nested)	Aliphatic amine, prin	Aliphatic amine, prin	Aliphatic amine, prin	Aliphatic amine, prin	Aliphatic amine
Import_Custom Inventory_1						
METI Japan						
REACH ECB						
TSCA						
US HPV Challenge Program						
1. Select data	abases related to aquati	c toxicity	; 2 . Clic	k Gather	; 3. Clic	k OK.
	۲.					>
						×

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data

The system automatically gives indication for the number of gather experimental data points

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data. Inserting data into the data matrix

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - <u>Step 2:</u> Investigating the applicability domain of an ad hoc category.
 - <u>Step 3:</u> Reading data for the analogues
 - <u>Step 4:</u> Data gap filling for 2-Butanamine

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine <u>Navigate to the target endpoint: Intoxication,</u> <u>D.magna,EC50, 48h</u>

Type Daphnia in the filter field; 2. Navigate to target endpoint by opening the nodes: EC50, intoxication, 48h
 Highlight the gap under the target chemical which will be filled in; 4. Select Trend analysis

Step 4. Data Gap Filling for 2-Butanamine *Navigate to the target endpoint: Intoxication,*

nd analysis Read across (Q)SAR Standardized Au	mated		into Categories Developed by LMC, Bulgari
Documents	daphnia 10	11 12	13 1
Document 1 Aliphatic amines Select from: Aliphatic amines	Structure	1) ⁴⁴⁰ H3C H3C H3C H3C	HgC~~~~~1942
	Pecot Possible data inconsistency	×	M: >20+30 mg/L
	 ✓ Native scale/unit ✓ mg/L (8 data; 8 chemicals) ✓ mol/L (1 data; 1 chemicals) ✓ µg/L (2 data; 1 chemicals) 		
	Gap filling scale/unit	M: >180 ppm	M: 20 (8.8÷84) mg/L
Data Gap Filling Settings	O mg/L O µg/L		
Only endpoint relevant Only chemical relevant	Data 11/11; Chemicals 10/10		M: 9.4 (6.9÷12) mg/L
t this position: Select a cell with a rigid (bold) path	OK	Cancel	
Standartized workflows 1	ULC50 (3/3) UNOEL (1/1)	M: 180 ppm	
The u	er will be informed If there is	s different experii	mental dat
Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine Navigate to the target endpoint: Intoxication, D.magna,EC50, 48h 🗙 🗿 🥱 🖉 🗊 Ð OSAR TOOLBOX 1 1 Input Profilina Data Category definition Data Gap Filling Report The OECD QSAR Toolbox Gan Filling for Grouping Chemicals \sim into Categories Frend analysis Read across (Q)SAR Standardized Automated Developed by LMC, Bulgar Filter endpoint tree... 6 Documents There are 1 endpoint values for 1 chemicals bigger than WS calculated by "Water Solubility (fragments)" ument 1 Remove data points Aliphatic amines L Select from: Aliphatic amines Structure The current gap filling state contains data with qualifiers F Enter GF(TA) with 11 chemicals, 11 data points Ecotoxicological Information The prediction is acceptable according to the statistics - Aquatic Toxicity AW SW (interpolation and R2 \ge 0.7 and analogues \ge 10) + Behavior (5/23) M: 43 mg/L M: 36 mg/L - + Immobilisation (1/1 There is helpful information concerning investigated chemicals (10/11) M: >180 ppm M: >100 mg/L M: 850 (690+1.05E+ M: >8.3 mg/L Daphnia magna Animalia (animals) \diamond **Data Gap Filling Settings** Only endpoint relevant Trend analysis prediction for EC50, based on 10 values Descriptors Select / filter data ✓ Only chemical relevant Predicted: 60.2 mg/L Model equation: EC50 = 2.70 (±0.669) + 0.506 (±0.221) * log Kow, log(1/mol/L) Gap filling approach At this position: Prediction Select a cell with a rigid (bold) path Descriptors / data Automated workflows Adequacy Standartized workflows Model/QSAR [(T/)om/4 Cumulative frequency 0 Calculation options Residuals []og(1 Visual options 020 Statistics Set units in figure title label Axis range tool 2 Confidence range tool loa Kow Accept prediction ×

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Subcategorize by</u>

<u>OFG(nested)</u>

QSAR TO		► Profiling	► Data ► Categor	y definition Data G	ap Filling > Repo	rt	X 0 5	e (1)
Gap Filling Trend analysis Read acro	Workflow Constant of the second seco						The OECD for Group into Categ Developed	QSAR Toolbox ing Chemicals jories d by LMC, Bulgaria
→ D ument 1 Aliphatic subject ▲ Selv (□) Subcategor ▼ Ent ♥ Ent ♥ Dpions ▲	bocuments Filter e	ndpoint tree			9 Hyf-~~~~^NHy	13 HgC	14 н _а слин ₂	
Skin irrit Skin irrit Zkin irrit Chemica Groups Lpinski Organic Organic	ation/corrosion Inclusion ation/corrosion Inclusion al elements of elements Rule Oasis functional groups functional groups (nest	amine, primary ranched with sec imary ed groups	AW SW (5/23) (1/1)	M: 120 mg/L M: 36 mg/L		M: 21.8 (19.7+24.1) r		
Organic Structur Tautom Toxicologi Repeate Custom	functional groups (US i functional groups, Nort resimilarity ers unstable cal ad dose (HESS)	malia (anir Arthropod Branci Da m targe sst one [STOP] malia (anir	nals) a (arthropods) hiopoda (branchiopods) phnia magna (10/11) nals)		M: >8.3 mg/L	M: 20 (8.8+84) mg/L	M: 20 (11+42) mg/L	M: 19 (8.7+40)
Options J Contraction Contrac	Uli Unselect All Im ount metabolism dd Mammalian metabolis dd Marmalian metabolism dd Rat In vivo metabolism di Rat In vivo metab	tic amine, primar tic amine, tertian , primary , tertiary Ikane	Trend an Predicte Model equation NH ₂	alysis prediction for EC d: 60.2 mg/L ECS0 = 2.70 (±0.669) + 0.50	50, based on 10 values 6 (±0221) * log Kow, log(1/mol	/L)	Select / filter Subcategor Mark chemicals	> data ^
Simulated Autoxid Autoxid Dissociat Hydrolys Hydrolys in vivo R <	ation simulator ation simulator (akaline tion simulator (akaline tion simulator (acidic) sis simulator (acidic) sis simulator (acidic) sis simulator (acidic) sis simulator (acidic) sis simulator (acidic) selected 3 Select Remo	(7/10) tt different ve selected		••	CH ₂		Remove market	CH ₃ ditions ical
1. Remove dissimil (nested) then 2. Cli	lar chemical ck Remove	s by click button	king on O	FG	July 2017	5 6	Accept p	rediction

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Predicted result</u>

QSAR TOOLBOX	Put ▶ Profilir	ng → Data → Categ	ory definition Data C	010 100 Sap Filling ► Repo	ort	× •	ሳ
Gap Filling Workflow						The OEC for Grou into Cate	D QSAR Toolbox ping Chemicals egories
	Filter endpoint tree		12 [target]	1	2	Develop 9	ed by LMC, Bulgaria
ent 1 hatic amines Select from: Alphatic amines Enter GF(TA) with 11 chemicals, 11 data points Enter GF(TA) with 11 chemicals, 11 data points Enter GF(TA) with 11 chemicals, 11 data points	Structure		H ₃ C NH ₂	H ₃ CNH ₂	H ₃ C _{NH2}	ngc	H¢~~~~
E cit of Data, o Subtategorized, organic function	Ecotoxicological Inf	formation					
	Aquatic Toxicity	AW SW (4/20		M: 71 mg/L	M: 141 mg/L		M: >40÷50 ma
		(
	EC50						
		nimalia (animals)					
	L _E	Arthropoda (arthropods)					
		Branchiopoda (branchiopods) Danhnia magna (8/9	M: >180 ppm	M: >100 mg/l	M: 850 (690÷1.05E+)	M: >83 mg/l	M· 20 (8.8÷84)
	L _{Ģ 48 h}	Dapinia magna (6/9	, w. > 100 ppm	Mi. > 100 mg/2	WI. 050 (050 + 1.052 +	Wi. 20.5 Hig/E	Wi. 20 (0.0×04)
< >		nimalia (animals)					
Data Gan Filling Settings		Arthropoda (arthropods)	ļ				×
	<u> </u>						/
 Only endpoint relevant Only chemical relevant 	Descriptors	Trend	analysis prediction for E	C50, based on 7 values		Select / filte	r data ^
At this position:	Prediction	Model equation	n: EC50 = 2.34 (±0.337) + 0.82	22 (±0.154) * log Kow, log(1/mo	ol/L)	Subcatego	orize
Select a cell with a rigid (bold) path					-	Mark chemical	ls by WS
Automated workflows 1 Standartized workflows 1	Adequacy			•		Mark crieffica	is by WS
	Cumulative frequency	[[7]				Mark chemicals by d	escriptor value
	Residuals	Ĕ4				Mark out	iers
		69] _				Filter points by tes	t conditions
	Statistics	ECS	◀ ਁ			Mark focused	chemical
						Mark focused	l points
		2				Remove mark	ed data
		0	1	2 3	4		~
			log Kow			V Accept	prediction
8	🛛 1 . Pre	edicted resu	It is 79	.0 mg/l			×

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Cumulative frequency</u>

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/Statistics

	<u>ta dap</u>	<u>Thing to </u>		<u>acanan</u>			<u> </u>
QSAR TOOLBOX	T Input	ng Data Catego	bry definition Da	01010 01 0 10100 ata Gap Filling	Report	× • ·	h d 0
Gap Filling Workfle	w D utomated					The OECI for Group into Cate Develope	D QSAR Toolbox ping Chemicals gories ed by LMC, Bulgaria
Description	Filter endpoint tree		12 [target]	1	2	9	13
Documents Documents ant 1 hatic amines Select from: Aliphatic amines Enter GF(TA) with 11 chemicals, 11 data points Enter GF(TA) with 11 chemicals, 11 data points Enter GF(TA) with 11 chemicals, 11 data points	Structure			H ₂ C NH;	H ₃ C _{NH2}	HgG	HgC~~~~
Cir: of Data: o Subcategorized: Organic function	Ecotoxicological In	formation					
	Aquatic Toxicity	AW SW (4/20)		M: 71 mg/L	M: 141 mg/L		M: >40÷50 mg.
	- Intoxication						
	- 🗆 24 h						
		nimalia (animals)					
	L _e	Arthropoda (arthropods)					
		Branchiopoda (branchiopods)					
		Daphnia magna (8/9)	M: >180 ppm	M: >100 mg/L	M: 850 (690÷1.05E+)	M: >8.3 mg/L	M: 20 (8.8÷84)
	L _{⊡ 48 h}					_	
		nimalia (animals)					
< >		Arthropoda (arthropods)					
Data Gap Filling Settings			ŀ				>
Only endpoint relevant	Descriptors	Statistical characteristics	TA r	model		Select / filter	data ^
Only chemical relevant	Descriptions	Number of data points, (N)	7		^		
At this position:	Prediction	Coefficient of determination, (R2)	0.97	'4		Subcatego	rize
Select a cell with a rigid (bold) path		Adjusted coefficient of determination, (R2adj) 0.96	59			1 14/0
Automated workflows 1	Adequacy	Coefficient of determination - leave one	e out, (Q2) N/A			Mark chemicals	s by WS
Standartized workflows 1		Sum of squared residuals, (SSR)	0.22	0		Mark chemicals by de	escriptor value
	Cumulative frequen	t deviation of residuals, (sN)	0.17	7			
	Pasiduals	standart deviation of residuals,	(s) 0.21	0		Mark outli	ers
	Residuais	unction, (F)	189	(05.09/)		Filter points by test	t conditions
	Statistics	risher treshold for statistical significance	e, (Fa) 10.0	(95.0%)			
						Mark focused c	hemical
		b0				Mark focused	points
		- model descriptor	Inter	rcept			
		- coeff. value	2.34	l		Remove marke	ed data
		- coeff. range	±0.3	337			
		- significance	No			, 🖌 🖌 Accept p	prediction
							X

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Interpretation of the</u> <u>result</u>

- The structurally similar analogs across category of aliphatic amines is used for data gap filling
- Subcategorization by Organic functional groups(nested) is applied
- The prediction based on the defined category is acceptable.
- The predicted value based on predefined category of aliphatic amines is 79.0 mg/l

Outlook

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling

• <u>Phase II.</u> Extension of the Category& Data gap Filling

Phase II: Extension Category & Data gap filling

- The extension of the category is performed by using Phase II of the category evaluation process (*Extension of Category & Data Gap Filling*). Other analogues are searched in the Toolbox, which are structurally and mechanistically consistent with the predefined category.
- The structural analogues could be defined using ECOSAR grouping

 Before defining the category, one should specify the endpoint - EC 50 48h D.magna

QSAR TOOLROX	Image: Composition Select Delete Chemical List Search Image: Structure Composition Select Delete Chemical List Substructure (SMARTS) Query	×
Documents	daphnia 9 10 11 Structure Image: structure Export Data matrix Image: structure Ecotoxicological Information Export Data matrix Image: structure Export Data matrix Image: structure Export Data matrix Image: structure	Selection of additional metadata fields:
	Behavior Immobilisation Infoxication Collapse branch Expand All Collapse All Collapse All Target endpoint Daphnia magna	Add Up Down Clear Remove
	Image: Solution of the second seco	
1. Right click	above "Daphnia magna"; 2. Select Target endpoint/Define;	45

Before defining the category, one should specify the endpoint - EC 50 48h
 D.magna

 Aquatic Toxicity 	tion				
Effect		Intoxication	~		
Endpoint		EC50	~		
Duration	(a,b)	48 h			
Test organisms (species)		Daphnia magna	~	Selection of	of additiona
				metadata 1	fields:
				A	dd
				Up	Down
				Clear	Remove

1. Confirm the endpoint by click "Finish"

 Before defining the category, one should specify the endpoint - EC 50 48h D.magna

QSAR TOOLBOX	Paul Profiling P Data > Cate	ory definition Data Gap Filling	► Report	X 0 5 4 8
Document Decum	Single Chemical	Chemical List	Substructure (SMARTS) Query	Target 1 The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Documents	daphnia	9 10	11	12 13 ^
▲ Document 1 ▲ Document 1 ▲ Alphatic amines ▲ Select from: Alphatic amines ▼ Enter GF(TA) with 11 chemicals, 11 data ▲ ▼ Enter GF(TA) with 11 chemicals, 11 data ◎ C free GF(TA) with 11 chemicals, 11 data ◎ C free GF(TA) with 11 chemicals, 11 data	Structure	HgC	4/ 0,0 M	2 H3C H3C H3C
2	Ecotoxicological Information			
	Aquatic Toxicity AW SW			
	+ Behavior (7/3)		M: >20-
	+ Immobilisation (1/)		
	Intoxication			
	24 n			
	Arthropoda (arthropoda)			
	Branchiopoda (hranchiopods)			
	Daphnia magna (10/1) M: >8.3 ma/L		M: >180 ppm M: 20 (8
	48 h			
	Animalia (animals)			
	Arthropoda (arthropods)			
	Branchiopoda (branchiopods)			
	Daphnia magna (10/1) M: 1.9 (1.5+2.4) mg/L		M: 9.4 (
	+ EC50/ (1/)		
	E IC50 (2/)ig/L		
	(3/	,		
	(3/ EE L C 100 (3/			
	NOEL (1/			M: 180 ppm
	+ Mortality (15/10) M: 5.15 mg/L		M: 278 mg/L M: >20-
	+ Reproduction (1/)		
The row	with defined endp	oint is high	lighted	· · · · · · · · · · · · · · · · · · ·
				×
19				~

Phase II: Extension Category & Data gap filling

Step 1: Category definition

QSAR TOOLBOX	Input ▶ Profiling ▶ Data ▶ Cata	tegory definition	X 0 5 6 0
Gap Filling Work	flow		The OECD QSAR Toolbox for Grouping Chemicals into Categories
Trend analysis Read across (Q)SAR Standardized	Automated		Developed by LMC, Bulgaria
Documents Document 1 Aliphatic amines Select from: Aliphatic amines F Enter GF(TA) with 11 chemicals, 11 data poin	Filter endpoint tree Structure	1 [target]	Ŷ.
Control C	Contraction Contr	W	
	Branchiopoda (branchiopoda)	1/1) M: 180 ppm 1/6) M: 20 ppm	
Only chemical relevant At this position: Select a cell with a rigid (bold) path			
The target ch	emical 2-Butanamine i	s loaded in new data matrix	
	c		~
1			×

- The ECOSAR strict category is used to define an broader category used in further analysis.
- The same endpoint: EC 50 48h *D.magna* will be predicted as with the predefined category

- Define ECOSAR category
- Before defining the category, the following databases related to the predicted endpoint are selected:

Phase II: Extension Category & Data gap filling Step 1: Category definition/Defining ECOSAR (strict)

	Input Profiling	► Data ► Cate	egory definition Da	01010 01 0 10100 ata Gap Filling	► Report	
Categorize						The OECD QSAR Toolbox for Grouping Chemicals into Categories
Define Define with metabolism Subcategorize Co	mbine					Developed by LMC, Bulgari
Documents	Filter endpoint tree		1 [target]			· · · · · · · · · · · · · · · · · · ·
Occuments Aquatic toxicity classification by ECOSAR Options ▲ f Select All Unselect All Invert Estrogen Receptor Binding Hydrolyss half-life (Ka, pH 7)(Hydrowin) Hydrolyss half-life (Ka, pH 8)(Hydrowin) Hydrolyss half-life (Kb, pH 7)(Hydrowin) Hydrolyss half-life (Kb, pH 8)(Hydrowin) Hydrolyss half-life (Kb, pH 7)(Hydrowin) Toxic hazard classification b Toxi	Structure Ecotoxicological Information Aquatic Toxicity Intoxication Aquatic Toxicity Intoxication Arthropoda Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch Branch		Up Up	Reset	- C ×	
Keratinocyte gene expression Oncologic Primary Classification			·	· · · · · ·		
Protein binding alerts for Chromosomal ab				0	OK Cancal	- 4
Protein binding alerts for skin sensitization Protein binding alerts for skin sensitization						
I. Highlight " Select Strict. 4	Aquatic toxicit . Click OK	y classific	cation by	/ ECOS	AR"; 2 .	Click Define; 3.

Phase II: Extension Category & Data gap filling Step 1: Category definition/Defining ECOSAR (strict)

QSAR TOOLBOX	→ Frifing → Data → Catego	bry definition > Data Gap Filling > Report	X 8 ち 4 8
Categorize			The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulga
 Documents 	Filter endpoint tree	1 [target] 2	4 5
Documents Options = Image: Comparison of the second of the se	Structure	сн ₃ н ₃ с, , , м ₁₂ к s found. ОК 1 M: 180 ppm	
DAT BOYENES (Jenicos and hongenous DAT scheme DNA alerts for AMES by OASIS DNA alerts for CA and NNT by OASIS Eye irritation/corrosion Exclusion rules by Eye irritation/corrosion Inclusion rules by I in vitro mutagenicity (Ames test) alerts b	1. Information t	hat 370 analo	gs are found. Click OK
in vivo mutagenicity (Micronucleus) alerts Kentinocyte gene expression Oncologic Pirmary Cassification Protein binding alerts for Chromosomal ab Protein binding alerts for skin sensitization Protein binding alerts for skin sensitization Protein Binding Potency h-CLAT Respiratory sensitisation	2		>

×

Phase II: Extension Category & Data gap filling Step 1: Category definition/<u>Reading data</u>

- The Toolbox will now retrieve those chemicals that have the same ECOSAR functionality as the target compound.
- The Toolbox automatically request the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

 In this example, as only databases are selected that contain information for aquatic toxicity endpoint, both options give the same results.

Phase II: Extension Category & Data gap filling Step 1: Category definition/<u>Reading data</u>

The system automatically gives indication for the number of gather experimental data points

Outlook

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Phase II.</u> Extension of the Category& Data gap Filling
 - <u>Step 1:</u> Category definition
 - <u>Step 2</u>: Navigate to the target endpoint this is already done, so it is skipped

Outlook

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Phase II.</u> Extension of the Category& Data gap Filling
 - <u>Step 1:</u> Category definition
 - <u>Step 2</u>: Navigate to the target endpoint
 - <u>Step 3:</u> Data Gap Filling

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling

QSAR TOOLEOX	hrofiling + Data + Category definition + Data	Gap Filling	ort						Xof	
Gap Filling Workflow									The OECE for Group into Cate	QSAR Toolbox ing Chemicals gories
Irend analysis Read across (Q)SAR Standardized Au					-	1		-	Develope	d by LMC, Bulgaria
Document 1 Search chemical Document 2 Cess 97530 Document 3 D Aliphatic amines	Filter endpoint tree Structure		13		15 • • • • ×		ноон	18 8rර	na Storofe	20
Y Enter GF(TA) with 11 chemicals, 11 data points	Ecotoxicological Information									
Y Enter GF(TA) with 11 chemicals, 11 data points Ch: 8I Data: 7 Subcategorized: Organic functional groups (nested)	Aquatic Toxicity AW SW									
4 2 Select from: Aliphatic amines	Accumulation (11/2	3)								
Aquatic toxicity classification by ECOSAR	+ Avoidance (4/	4)		M: 10 mg/l		M: 10 mg/l				
	Biochemistry (27/28	0)								_
	- Cell(s) (15/3	5)	M: 500÷8E+03 mg/L							
	Development (30/11	B)								
	Ecosystem Process (1/	4)						M: 1+102 mg/L		
	+ Enzyme(s) (16/15	5)								
	Feeding Behavior (13/3	B)			M: 435 mg/L					
	+ Genetics (22/36	0)						Mi 1 mg/l		
	Growth Inhibition (32/6	1)						Wi: T mg/L		
	Histology (19/7	8)								
 Data Gap Filling Settings 	+ Hormone(s) (9/9	3)								
	Immobilisation (36/3	7)								
✓ Only endpoint relevant	+ Immunological (3/	3)								
At this position		3)								
At this position.										
Select a cell with a rigid (bold) path Automated workflows										M- 06 (90 - 10)
Standardized workflows 1		D)								101: 30 (03+10)
	Animalia (animals)									
	Arthropoda (arthropods)									
	Branchiopoda (branchiopods)									
	Ceriodaphnia dubia (4/	6)								
	Daphnia magna (59/6	B)					M: 25.2 (19.6+31.7) pp	on		
	Daphnia pulex (1/	2)								
	Insecta (insects) (1/	1)								
	H Maiacostraca (1/	1)			-					M: 12 (1+14)
	TH Mollusca (molluscs mollusks) (2/	5)								mi 62 (1±14)
	T f f 2 h (1/	1)								
		21								

1. Select Trend analysis

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling

Possible data inconsistency	×
 ✓ Native scale/unit ✓ mg/L (35 data; 35 chemicals) ✓ mol/L (4 data; 4 chemicals) ✓ ppb (5 data; 5 chemicals) ✓ ppm (21 data; 14 chemicals) ✓ µM (1 data; 1 chemicals) ✓ µg/L (2 data; 1 chemicals) 	
Gap filling scale/unit I log(1/mol/L) mg/L mol/L ppb ppm µM µg/L	
Data 42/68; Chemicals 41/59	
	OK Cancel

The user will be informed If there is different experimental data. Click OK

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Subcategorize by Water solubility</u>

	Ima > Data > Category definition > Data Sas Films > Report	× • • • •
Gap Filling Workflow		The OECD QSAR Toolbox for Grouping Chemicals into Categories
rend analysis Read across (Q)SAR Standardized Automated	Filter endpoint tree	Developed by LMC, Bulga
Document 1	Remove data points	
# CaS: 97530 Document 3 Document 3	Structure	y "Water Solubility (fragments)"
 ▼ Enter GF(TA) with 11 chemicals, 11 data points ▼ Enter GF(TA) with 11 chemicals, 11 data points □ Ch: 8] Data: 7 Subcategorized: Organic functional groups (nested) \$ select from: Alitybatic amines 	Image: Constraint of the current gap filling state Image: Constraint of the current gap filling state Image: Constraint of the current gap filling state Image: Constraint of the current gap filling state Image: Constraint of the current gap filling state Image: Constraint of the current gap filling state	ate contains data with qualifiers
Gauge Torin Approace unimed to a sufficiation by ECOSAR Aquatic toxicity classification by ECOSAR Tenter GF(TA) with 42 chemicals, 42 data points	DLOEC (2/4) M: >224-236 mg/L The prediction is acception in the prediction is acception in the prediction is acception. ID NOEC (2/4) M: >0.64+0.96 mg/L The prediction is acception. ID NOEL ID NOEL ID NOEL ID NOEL	table according to the statistics £ 0.7 and analogues ≥ 10)
	Select water solubility calculators	
2	Water Solubility Exp Water Solubility Water Solubility	
,	Mit 11.7 mg/L	
☑ Only endpoint relevant ☑ Only chemical relevant		
At this position:	nalysis prediction for EC50, based on 41 values ed: 34.8 mg/L	Select / filter data
Select a cell with a rigid (bold) path Automated workflows 1	n: ECS0 = 2.93 (±0.397) + 0.518 (±0.102) * log Kow, log(1/ma/L)	Subcategorize
Standardized workflows 1		Mark chemicals by WS
	Cum	Mark chemicals by descriptor value
		Mark outliers
		Filter points by test conditions
		Mark focused chemical
		Remove marked data
	-2 -1 0 1 2 3 4 5 6 7 8 logKow	Accept prediction

Click Mark chemical by WS; 2. Select Water solubility (fragments);
 Click OK. 4. The same steps will be reproduced if you click on the link available in the notifying helper

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Subcategorize by Water solubility</u>

SAR TOOLBOX	Poput ► Profiling ► Data ► Catego	y definition > Data Gap Filling > R	eport	X 🕈 🛧 🦄 🖉 🗊 The OECD QSAR Toolbox for Grouping Chemicals
d analyzic Pand accord (O)SAR Standardized Au	W			into Categories
Documents	Filter endpoint tree	1 [target] 2	5 9	Developed by LMC, Bulgari 11
nines rom: Aliphatic amines F(TA) with 11 chemicals, 11 data points F(TA) with 11 chemicals, 11 data points	Structure			
El Data: 8 Subcategonzed: Organic functional gro iom: Aliphatic amines atic toxicity classification by ECOSAR Enter GF(TA) with 42 chemicals, 42 data points				
	LOEC (2/4) NOEC Information	×		M: >2.2
	Worphology Mortality Marked 4 data point(s) One Effect Coded	for 4 chemical(s)		M: 200 mg/L M: 5 ppm
Data Gan Filling Sattings	Population Reproduction	ок 2	M: 110 mg/L	M: ca.9.6 mg/L
Only endpoint relevant				
Only chemical relevant	Descriptors Trend a Predicte	alysis prediction for EC50, based on 41 value d: 34.8 mg/L - 5550 = 202 (±0.207) + 0.518 (±0.102) * log Kow log(1	es (mal/l)	Subcategorize
At this position:	Prediction 8	EC30 = 2.93 (20.397) + 0.310 (20.102) * 10g Kow, 10g(1)		Mark chemicals by WS
Select a cell with a rigid (bold) path Automated workflows 1	Adequacy		Mark	hemicals by descriptor value
Standartized workflows 1	Cumulative frequency			Mark outliers
	Residuals		• Filte	r points by test conditions
	Statistics 0.4			Mark focused chemical
				Mark focused points
	2			Remove marked data
				Class suisting mandes

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Subcategorize by OFG(nested)</u>

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Subcategorize by Lipinski rules</u>

	t I I I I I I I I I I I I I I I I I I I	Data Category definition Data Gap Filling Ford Category definition	X 8 5 7 8
Subcategorization Options	- 🗆 X		The OECD QSAR Toolbox for Grouping Chemicals into Categories
Tren f Select All Unselect All Invert	Abou		Developed by LMC, Bulgari
Chemical element Chemical element Tr G Lipinski Rule Oass	R Bioavailable	94 101 128 134	177 ()
ah: Organic functional groups Organic functional groups (nested) Organic functional groups (US EPA) Organic functional groups, Norbert Haider (Structure smlarity Tautomers unstable	check	- Daphnia magna (15/16) M: 0.0036 (0.0022+0.00 M: 0.015 (0.013+0.019) M: 0.026 (0.018+0.036 (1/1)) (1/1) (1/	0.011+0.019) M: 1.6 (1.2+2) r ×
Toxicological Repeated dose (HESS) Options f Select All Unselect All Invert Do not account metabolism Observed Mammalian metabolism	Differ fn At k IsroP (11) Bioavailable (4) Not bioavailable	File Image: Specific system Image: Specific system <thimage: specific="" system<="" th=""> Image: Specific sys</thimage:>	0 M: 2.17 mg/L
Observed Microbial metabolism Observed Rat In vivo metabolism Observed Rat In vivo metabolism Observed Rat Liver S9 metabolism Simulated Autoxidation simulator Autoxidation simulator Autoxidation simulator Autoxidation simulator	ative c	Save to smi Predicted: 79.1 mg/L Model equation: ECS = 231 (40272) + 0.857 (±0.0694) * log Kow, log(1/mol/L)	OK Select / filter data
Hydrolysis simulator (acidic)			Subcategorize
Hydrolysis simulator (basic) Hydrolysis simulator (neutral)	Selected 4 (11/15)		Mark chemicals by WS
in vivo Rat metabolism simulator	Remove selected	Mark	chemicals by descriptor value
	Reciduals E		Mark outliers
	Desiduais () 60]		ter points by test conditions
	Statistics		Mark focused chemical
	2		Mark focused points

Chemicals with very long chain could be removed from the category due to their non-bioavailability. **1**. **Select** Lipinski rules; **2**. **Double click** to see "Not- bioavailable" chemicals; **3**. **Close** the appeared window; **4**. **Remove** dissimilar chemicals

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Prediction result</u>

QSAR TOOLBOX	+ rin	g ▶ Data	► Catego	Dry definition	ap Filling > Rep	ort	X 0 1	h ∉ 0
Gap Filling Workflo	w v utomated						The OEC for Group into Cate	D QSAR Toolbox bing Chemicals gories
Documents	Filter endpoint tree			1 [target]	92	128	177	180
iphatic amines icity classification by ECOSAR F(TA) with 42 chemicals, 42 data points 381 Data: 32 Eliter by WG: Weater Solubility (fearment	Structure			H ₃ C	496~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Hg6	HgG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%~ ()
Ch: 16 Data: 16 Subcategorized: Organic functional g		L Daphnia magna	(11/12)		M: 0.5 (0.4÷0.61) mg/L	M: 0.026 (0.018÷0.036)	M: 1.6 (1.2÷2) mg/L	M: 1.9 (1.5÷2.4)
Ch: 12 Data: 12 Subcategorized: Lipinski Rule ((1/1)					
	- ⊕ LC50		(1/1)					
	L → NOEL		(1/1)	M: 180 ppm	14 0 0 11 1	14.10	M 0.17 //	14 21 /
	H No Effect Cod	ed	(12/89) (2/6)	WI: 2/8 mg/L	M: 5 ppm	M: 10 mg/L M: 5 ppm	M: 2.17 mg/L	M: 31 mg/L
	- + Physiology		(4/28)					
	Population		(5/29)			M: 1.28 mg/L		M: 0.937 mg/L
	Terrestrial Toxici	/ ty	(7/28)				M: 1 mL	M: 2 %
	🛨 Human Health Hazar	ds						
Data Gan Filling Settings	Profile							
	<							,
 Only endpoint relevant Only chemical relevant 	Descriptors		Trend a	nalysis prediction for EC	50 values		Select / filter	data
At this position:	Prediction	·····	Model equatio	n: EC50 = 2.34 (±0.324) + 0.834	8 (± 1 , log(1/m	ol/L)	Subcatego	rize
Select a cell with a rigid (bold) path Automated workflows 1	Adequacy	6					Mark chemical	by WS
Standartized workflows 1	Cumulative frequency					•	Mark chemicals by de	scriptor value
	Residuals	Ĕ					Mark outli	ers
		614 10		•			Filter points by test	t conditions
	Statistics	EG.	-	•			Mark focused o	hemical
			•				Mark focused	points
							Remove marke	ed data
	1. 1.	0		1 2	3	4 5	Accept p	prediction
Pr	rediction i	result is /	7.8	mg/I.				×
12								

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Phase II: Extension Category & Data gap filling Step 3: Data Gap Filling/<u>Accept the Prediction result</u>

Gap Filling Workf	Row O Automated					The OE for Grou into Cat	CD QS/ uping (tegorie
Documents phatic amines icity classification by ECOSAR FTA) with 42 chemicals 42 data points	Filter endpoint tree Structure	1 (H3C CH3	92 ^{H2C} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	128	177 нуснену	180 "
38 Data: 38 Filter by WS - Water Solubility (fragment Dr. 16 Data: 16 Subcategorized: Organic functional Ch: 12 Data: 12 Subcategorized: Lipinski Rule	Daphni Daphni LC0 Del LC100 DEL OEL OEL Officially Physiology Population Sediment toxicity Terrestrial Toxicity Human Health Hazards	a magna (11/12) (1/1) (1/1) (1/1) (1/1) (1/1) (1/1) (1/2/89) (2/6) (4/28) Confirm Are you sure you	180 ppm 278 mg/L	M: 0.5 (0.4+0.61) mg/L M: 0.211 mg/L M: 5 ppm X ediction?	M: 0.026 (0.018+0.036 M: 10 mg/L M: 5 ppm M: 1.28 mg/L	 M: 1.6 (1.2+2) mg/L M: 2.17 mg/L M: 2.17 mg/L M: 1 mL 	M: 1 M: 3 M: 0
Data Gap Filling Settings	Profile		Yes	No			
Only chemical relevant At this position: Select a cell with a rigid (bold) path Automated workflows Standartized workflows 1	Descriptors Prediction Adequacy Cumulative frequency Residuals Statistics	Pr 2	234 (±0.324) + 0.838	((40.116)* log Kow log(1/m	hol(L)	Select / http://www.select / http://www.select / http://www.select.com/select/s	Ir data prize Ils by V lescript liers st conc chemii

Click on

1.

Outlook

- Background
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Phase II.</u> Extension of the Category& Data gap Filling
- Save the prediction result

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc, on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

OSAR Toolbox 4.0.0.28533 [Document 1]		- 0 ×
QSAR TOOLEOX	Port Port Port Port Port Port Port Port	X 9 5 2 8
Document Image: December 2 Image: Decemb	e Chemical List Search Target I Name Structure Composition Select Delete ChemiDs Database Inventory List Substructure (SMARTS) Query De	The OECD QSAR Toolbo for Grouping Chemicals into Categories
Documents 2 ent 1 hatic amines Select from: Aliphatic amines Aquatic toxicity classification by ECOSAR * ♥ Enter GF(TA) with 42 chemicals, 42 data points * * ♥ Cht: 81 Data: 38 Filter by WS - Water Solubit * * © Cht: 10 Data: 16 Subcategorized: Organ © © Ch: 12] Data: 12 Subcategorized: Lip	File Save as File Str Organize New folder Desktop Aliphatic_amines.tb4 7/3/2017 10:39 AM TB4 File Aliphatic_amines.tb4 7/3/2017 10:39 AM TB4 File Aliphatic_amines.tb4 7/3/2017 10:39 AM TB4 File Aliphatic_amines.tb4 Pictures Downloads Downloads Downloads Downloads Downloads Music Pbt Downloads Music Pictures Videor	Developed by LMC, Bulg 5
	Image: Local Disk (C:) Image: Local Disk (C:) File name: Aliphatic_amines.tbsl Save as type: Toolbox documents (*.tb4)	

1. Go to Input section 2.**Click** on Save button 3. **Define** name of the file; 4. **Click** Save button

×

Open saved file

Le Church	Profiling Profiling	on Data Gap Filling Chemical List Substructure (SMARTS) Query abase Inventory List Substructure (SMARTS) Query Query Image: Chemical List Substructure (SMARTS) Query Image: Chemical List Image: Chemical List Substructure (SMARTS) Query Image: Chemical List Image: Chemical List Substructure (SMARTS) Image: Chemical List Image: Chemica	Et The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
1. Create new document	File name: Aliphatic amines.tb4	Find and select file:	4. Click Open
The OFICD OSAB Todlbox for Grouping Chemi	cals into Categorijes	Julk. 2017	×

71

Open saved file

The OECD QSAR Toolbox for Grouping Chemicals into Categories