QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Step-by-step example for building QSAR model

- Background
- Objectives
- The exercise
- Workflow of the exercise

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox for building a QSAR model for predicting aquatic toxicity.
- By now you have some experience in using the Toolbox so there will be multiple key strokes between screen shots.

- Background
- Objectives
- The exercise
- Workflow of the exercise

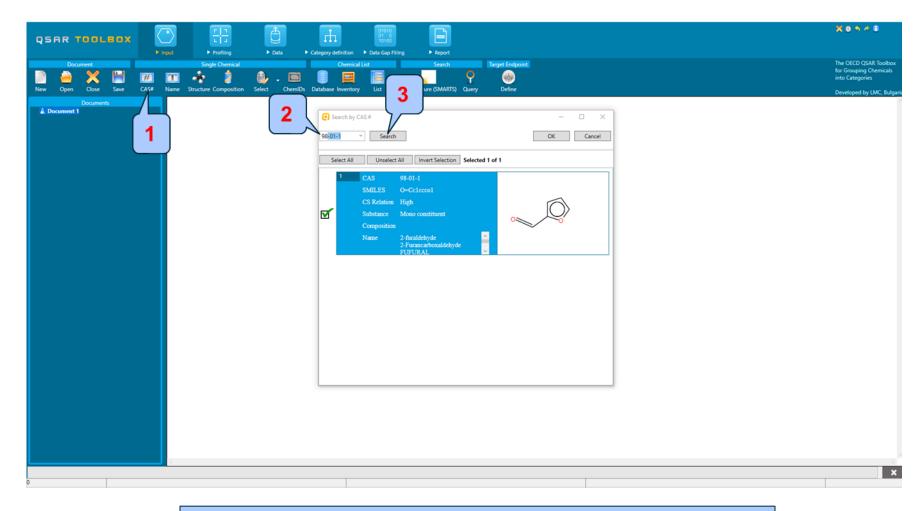
Objectives

- This presentation demonstrates building a QSAR model for predicting acute toxicity of aldehydes to *Tetrahymena pyriformis*. The presentation addresses specifically:
 - predicting acute toxicity for a target chemical;
 - building a QSAR model based on the prediction;
 - applying the model to other aldehydes;
 - exporting the predictions to a file;

- Background
- Objectives
- The exercise
- Workflow of the exercise

The Exercise

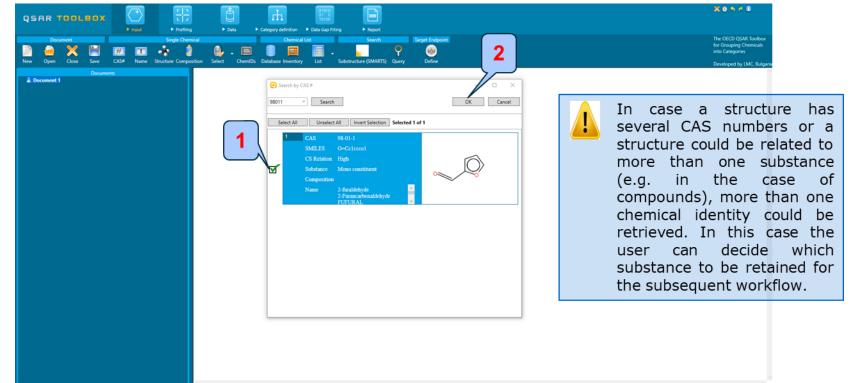
- This exercise includes the following steps:
 - select a target chemical Furfural, CAS 98-01-1;
 - extract available experimental results;
 - search for analogues;
 - estimate the 48h-IGC50 for *Tetrahymena pyriformis* by using trend analysis;
 - improve the data set by either:
 - subcategorizing by "Protein binding" mechanisms, or
 - assessing the difference between outliers and the target chemical
 - evaluate and save the model;
 - use the model to display its training set, visualize its applicability domain and perform predictions.


- Background
- Objectives
- The exercise
- Workflow of the exercise

Workflow of the exercise

- Remember the Toolbox has 6 modules which are used in a sequential workflow:
 - Input
 - Profiling
 - Data
 - Category Definition
 - Data Gap Filling
 - Report

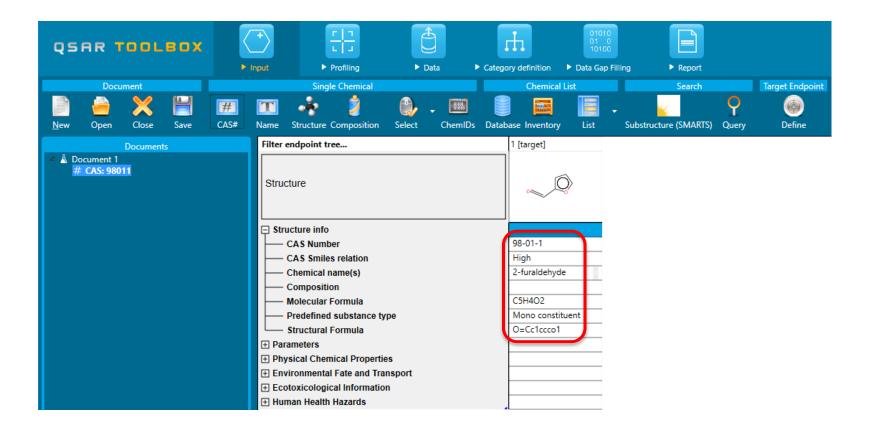
- Background
- Objectives
- The exercise
- Workflow of the exercise
 Input


Input

1. Click on CAS# 2. Enter CAS# 98-01-1; 3. Click Search;

Input Target chemical identity

The Toolbox now searches the Toolbox databases and inventories for the presence of the chemical with structure related to the current CAS number. It is displayed as a 2D image. Note it is unselected by default.

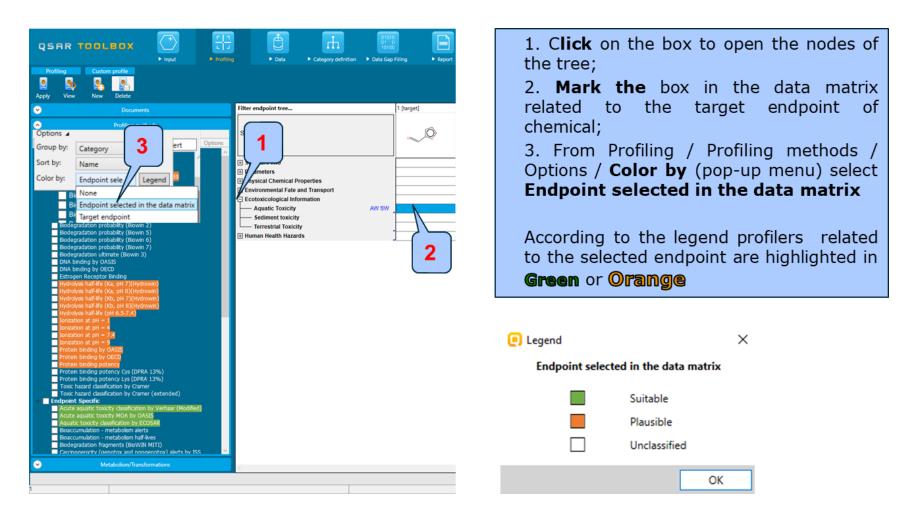


Mark desired chemical (in case there is only one chemical it is marked by default);
 Click OK to add chemical in data matrix;

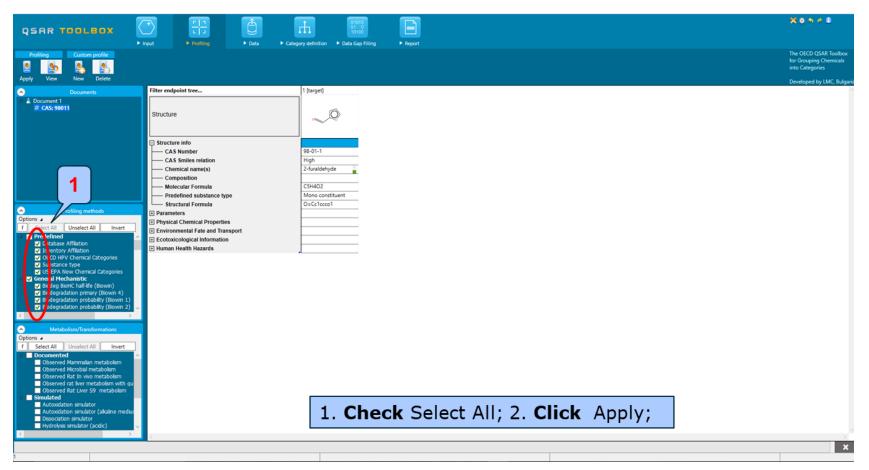
Input Target chemical identity

- Target chemical is displayed on the data matrix.
- To see chemical identification click on the box next to "Structure info" (see next screen shot).

Chemical Input Target chemical identity



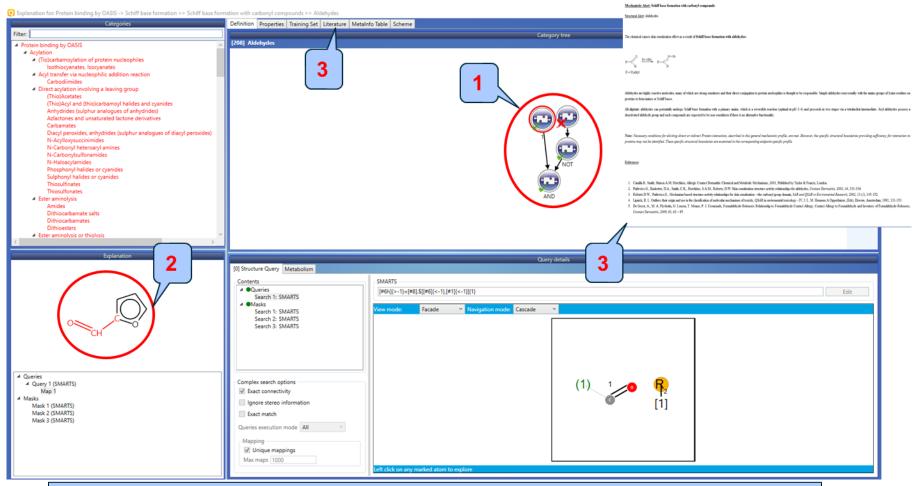
- Background
- Objectives
- The exercise


Workflow of the exercise

- Input
- Profiling

- Select the "Profiling methods" related to the target endpoint
- This selects (a green check mark appears) or deselects (green check disappears) profilers.
- To help the user to choose suitable profiling methods, a new feature has been developed – see next slide

For this example, select all profilers.



- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appeared as a dropdown box under the target chemical (see next screen shot).
- Green-white rectangles in some result boxes indicate there is more than one profiling result and the field needs to be expanded.

Profiling Profiles of "Furfural"

QSAR TOOLBOX Input Profiling Input Profiling Profiling Custom profile 2 Input Profiling Apply View New Delete Prefiling Input Profiling Apply View New Delete Prefiling Input Profiling Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the profile Image: Construction of the prof	I [target] Basic (0.000, 10.000) George (0.000)	In this case there is structural evidence that the target could interact to DNA and proteins, it has also mode of action and it is as aldehyde. This step is critical for next grouping of analogues.
Ionization at pH = 7.4 Ionization at pH = 9 Protein binding by OASIS Copti Chemical 1 (0=Cc1ccco1) Protein binding by OASIS	Sci (0000 19000) Source (0000) Source (0000) Schiff base formation with carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds Schiff base formation >> Aldehydes Not exit found Not possible to source (0000) DPRA lass() DPRA lass() DVL of mechanistic domain	 Right click to see why the target is Protein binder by "Protein binding by OASIS";
 Schiff base formation Schiff base formation with carbonyl compounds Aldehydes Aldehydes a Option 	High (Class III) High (Class III) Class 3 (unspecific reactivity) Aldehydes Aldehydes (Mono) Aldehyde [-CHO] Fast Aldehyde [-CHO] Simple aldehyde (Genotox) No alent found No alert found No alert found	The "Protein binding by OASIS" profiler has hierarchical structure consisting of three levels: Structural alert, Mechanistic alert and Mechanistic domain
R s y 155 Details Close "	Undefined Inclusion rules not met Simple aldehyde H-acceptor-path3-H-acceptor Not possible to classify according to these rules Aldehyde Type Compounds No alert found Skin sensitization Category 18 Schiff base formation Nn alert found	 2. Left click on the "Explain"; 3. From the list of the profiling results Click on the structural alert "Aldehydes"; 4. Click Details;

Profiling Profiles of "Furfural"

Structural boundary of the category; 2. Definition of the used common fragments;
 Mechanistic justification of the category (Literature tab)

Mechanistic Domain: Schiff base formation

- Background
- Objectives
- The exercise

Workflow of the exercise

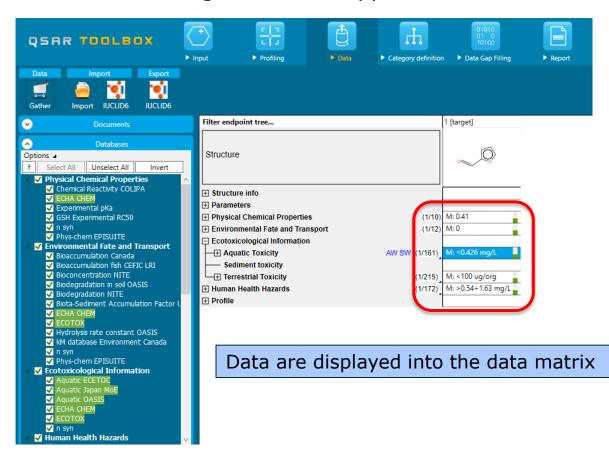
- Input
- Profiling
- Data

Data Extracting endpoint values

A new functionality for specifying bases containing data with desired endpoint is available (similar to this one for suitable profiling methods). In our case we will use all databases.

QSAR TOOLBOX		An Brond Brond Day definition > Data Gap Filling > Report	X 9 5 7 8
Data Import Export			The DECD QSAR Toolb for Grouping Chemical into Categories
Gather Import IUCLID6 IUCLID6	1		Developed by LMC, Bu
Documents	Filter endpoint tree	rget]	
3	Structure	~@	
	Ionization at pH = 1	Basic (0.000 , 10.000)	
	Ionization at pH = 4	Basic (0.000, 10.000)	
	Ionization at pH = 7.4	Basic (0.000, 10.000)	
	Ionization at pH = 9	Basic (0.000 , 10.000)	
2	Protein binding by OASIS	Schiff base formation Schiff base formation >> Schiff base formation with carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldehydes	
	Protein binding by OECD	No alert found	
O Unitabases	Protein binding potency	Not possible to classify according to these rules (GSH)	
Options .	Protein binding potency Cys (DPRA 13%)	DPRA less than 9% (DPRA 13%)	
f Select All Unselect All Invert ✓ Physical Chemical Properties	Protein binding potency Lys (DPRA 13%)	Out of mechanistic domain	
Chemical Reactivity COLIPA	Toxic hazard classification by Cramer	High (Class III)	
DB1iu6	Toxic hazard classification by Cramer (extended)	High (Class III)	
✓ DBIU6	Endpoint Specific		
ECHA CHEM Experimental pKa	Acute aquatic toxicity classification by Verha	Class 3 (unspecific reactivity)	
GSH Experimental RC50	Acute aquatic toxicity MOA by OASIS	Aldehydes	
Phys-chem EPISUITE	Aquatic toxicity classification by ECOSAR	Aldehydes (Mono)	
Environmental Fate and Transport	Bioaccumulation - metabolism alerts	Aldehyde [-CHO]	
✓ Bioaccumulation Canada ✓ Bioaccumulation fish CEFIC LRI	Bioaccumulation - metabolism half-lives	Fast	
	Biodegradation fragments (BioWIN MITI)	Aldehyde [-CHO]	
	Carcinogenicity (genotox and nongenotox) al	Simple aldehyde (Genotox)	
Inventories	DART scheme DNA alerts for AMES by OASIS	Not known precedent reproductive and developmental toxic potential No alert found	
Options a	DNA alerts for CA and MNT by OASIS	No alert found	
f Select All Unselect All Invert	Eye irritation/corrosion Exclusion rules by BfR	Undefined	
Canada DSL COSING	Eye irritation/corrosion Inclusion rules by BIR	Inclusion rules not met	1. Go to Data
DSSTOX	in vitro mutagenicity (Ames test) alerts by ISS	Simple aldehyde	
ECHA PR	in vivo mutagenicity (Micronucleus) alerts by ISS	H-acceptor-path3-H-acceptor	2. Select all databases
EINECS HPVC OECD	Keratinocyte gene expression	Not possible to classify according to these rules	
Import_Custom Inventory_1	Oncologic Primary Classification	Aldehyde Type Compounds	2 Olials Cathan
METI Japan	Protein binding alerts for Chromosomal aberra	No alert found	3. Click Gather
NICNAS	Protein binding alerts for skin sensitization a	Skin sensitization Category 1B	
REACH ECB TSCA	Protein binding alerts for skin sensitization	Schiff base formation	
US HPV Chalenge Program	Drotain Rinding Dotancy h CLAT	No slart found	

Data Process of collecting data


Toxicity information on the target chemical will be electronically collected from the selected datasets.

QSAR TOOLBOX	input	tropy definition	K 0 5 7 0
Data Import Export Gather Import UCUD6 UCUD6		T K M	he OECD QSAR Toolbox or Grouping Chemicals nto Categories
	and the second sec		Veveloped by LMC, Bulgaria
Documents # Document 1 # CAS: 98011	Filter endpoint tree	1 [turget]	^
	Ionization at pH = 1 Ionization at pH = 1 Ionization at pH = 7.4 Ionization at pH = 7.4 Protein binding by OASIS	Basic (0000, 10.000) Basic (0000, 10.000) Basic (0000, 10.000) C Read data?	
Databases Dotons Detabases Dotons Solect All Unselect All Invert Oriencial Resolutivy COLIPA Oriencial Resolutivy COLIPA Oriencial Resolutive COLIPA	Protein binding by OECD Protein binding potency Protein binding potency Cys (DPRA 13%) Protein binding potency Lys (DPRA 13%) Toxic hazard classification by Cramer Toxic hazard classification by Cramer (extended	All endpoints O Choose from Tautomens Or Cancel Out of mechanistic domain Help (Class III) Ot of Mechanistic domain	×
DBU6 ECAL OHEM Experimental pta DPUITE Experimental Fiste and Transport Beaccumulation Canda Beaccumulation feh CEPIC LRI	Endpoint Specific Acute aquatic toxicity classification by Verha Acute aquatic toxicity assification by ECOSAR Aquatic toxicity classification by ECOSAR Biodecumulation - metabolism half-lives Biodegradation fragments (BioVNI MITI) Carcinogenicity (genotox and nongenotox) al	Aldehydes Aldehydes (Mono) Aldehydes (Mono) Aldehyde (CHO) Fast Aldehyde (CHO)	
Inventorities Options	Calcingenticity genotox and hongenotox as DAR scheme DNA alerts for AMES by OASIS ONA alerts for CA and MMT by OASIS Eye initiation/corrosion Exclusion rules by BIR Eye initiation/corrosion Inclusion rules by BIR in vitro mutagenicity (Ames test) alerts by ISS	Not known precedent reproductive and developmental toxic potential No aker found No aker found Undefined Incluion rules not met Simple addrevelopmental	
ECHA PR EINECS HPVC OECD Import_Custom Inventory_1 METLIapan NICIAS REACH ECB TSCA	in vitro intragencity (neme sets) areas by in the by inter- im vitro intragencity (Micronucleus) alerts by IS Keratinocyte gene expression Oncodojic Primary (Classification Protein binding alerts for Skin sensitization a. Protein binding alerts for skin sensitization	K-acceptor-path3-H-acceptor Not possible to classify accerding to these rules Addetyde Type Compounds Sen senitazion Category 18 Schift East Formation 1. Click OK to read all available d	ata
US HPV Challenge Program	C Drotain Binding Botancy h (*1 AT	No Mart Found	×

A window with "Read data?" appears. Now the user could choose (via radio button) to collect "All" or "Endpoint specific" data. In our case collect "All".

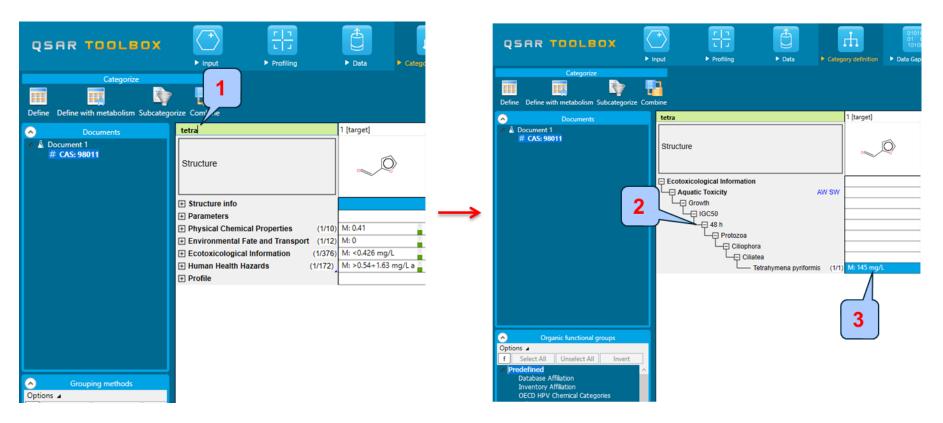
Data Read data for analogues

In this example, an insert window appears stating that there were found 570 data points available for the target chemical appears. Click OK.

- Background
- Objectives
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Data
- Category definition

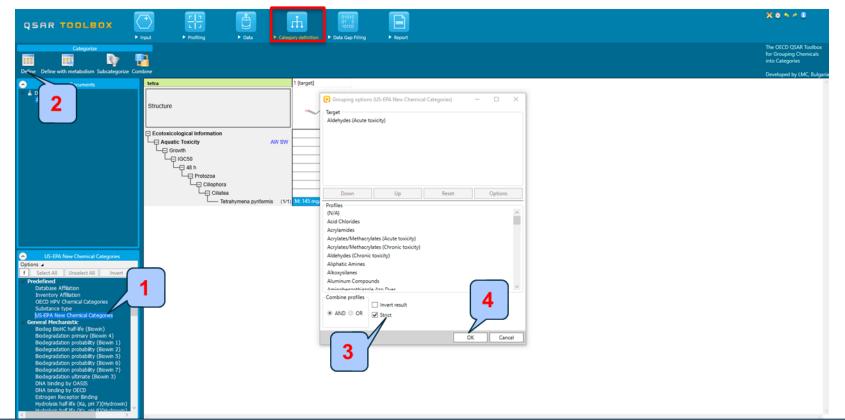

Category definition Target endpoint

• In this exercise we will build a QSAR model to estimate the following endpoint:

Ecotoxicological Information#Aquatic Toxicity#Growth#IGC50#48h#Protozoa#Ciliophora#Ciliat ea#Tetrahymena pyriformis

 The initial search for analogues is based on structural similarity by US-EPA categorization

Category definition Navigate to the target endpoint

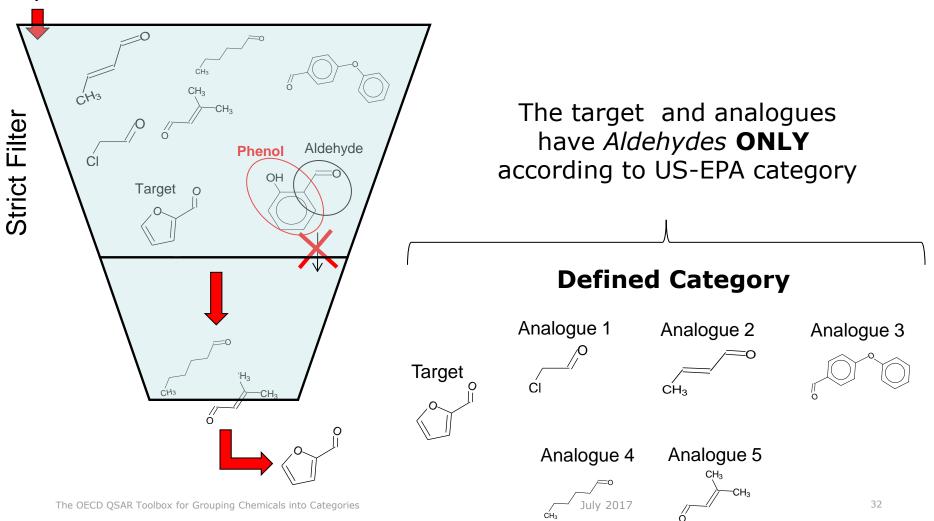


1. Use Filter (in green) to type "Tetra" in the empty field and click Enter; 2. This will open nodes of data matrix to the target endpoint; 3. **Highlight** the cell that will be filled in (in this case we will reproduce the observed data);

Category definition Defining US-EPA category

- The initial search for analogues is based on structural similarity, of US EPA categorization
- Select US-EPA New Chemical Category
- Click Define (see next screen shot)

Category definition Defining US-EPA category


1. **Highlight** "US-EPA New Chemical Categories"; 2. **Click** Define; 3. **Put** a tick in the Strict box (see next screen shot); 4. **Click** OK to confirm the category **Aldehydes (Acute toxicity);**

Category definition Defining US-EPA category strict functionality

- The Strict functionality means that the software will group analogues having ONLY the categories of the target and will exclude the analogues having any other categories according to the profiler used in the grouping method.
- For example, if the profiling for the target results in Aldehydes (Acute toxicity) ONLY according to US-EPA category, the group of analogues will include Aldehydes (Acute toxicity) ONLY. (See next screen shot)

Category definition Defining US-EPA category strict functionality

Input

Category definition Analogues

- The Toolbox now identifies all chemicals corresponding to Aldehydes (Acute toxicity) by US-EPA listed in the databases selected under "Data".
- 665 analogues including the target chemical are identified; they form a mechanistic category "Aldehydes (Acute toxicity)", which will be used for gap filling.

Category definition Reading data for Analogues

- The Toolbox will now retrieve those chemicals that have the same structural alert as the target
- The Toolbox automatically request the user to select the endpoint that should be retrieved
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see bellow)

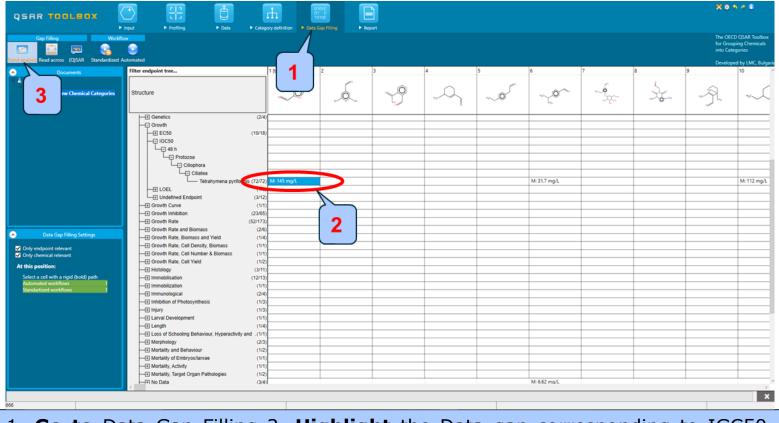
Read data?	×	💽 Gather data
All endpoints Choose	from Tautomers	18735 points added across 655 chemicals
	OK Cancel	

 \times

OK

Category definition Summary information for Analogues

After a message for number of data collected the experimental results for the target and analogues are inserted into the matrix.


Categorize	Proput Profiling Profiling Profiling	Category definition		eport							CD QSAR uping Che
Define with metabolism Subcategorize (ped by LN
	Filter endpoint tree	1 [target]	2	3	4	5	6	7	8	9	10
ocument 1 ¢ CAS: 98011 © US-EPA New Chemical Categories	Structure	~		~ 9	nge C	·~_0	~~_ <mark>0</mark> ~~	~ free	5	-J.	н _и с
	GC50 (1 GC50 GC50 GC50 GC100phora	0/18)									
	LoEL	(4.10)					M: 31.7 mg/L				M: 11
	- Growth Curve	(3/12) (1/1) (3/65)									-
	Growth Rate and Biomass	(2/6)									
US-EPA New Chemical Categories	Growth Rate, Biomass and Yield Growth Rate, Cell Density, Biomass Growth Rate, Cell Number & Biomass	(1/4) (1/1) (1/1)									-
elect All Unselect All Invert		(1/2) (3/11)									
atabase Affiliation ventory Affiliation ECD HPV Chemical Categories	Immobilisation (Immobilization Immunological	2/13) (1/1) (2/4)									+
5-EPA New Chemical Categories	Inhibition of Photosynthesis Injury	(1/3) (1/3)									
odeg BioHC half-life (Biowin) odegradation primary (Biowin 4) odegradation probability (Biowin 1)	Larval Development Length Loss of Schooling Behaviour, Hyperactivity and	(1/1) (1/4) .(1/1)									+
degradation probability (Biowin 2) degradation probability (Biowin 5) degradation probability (Biowin 6) degradation probability (Biowin 7)	Morphology Mortality and Behaviour	(2/3) (1/2)									
voegradation prodability (Bowin 7) odegradation ultimate (Biowin 3) IA binding by OASIS IA binding by OECD	Mortality of Embryos/larvae Mortality, Activity Mortality, Target Organ Pathologies	(1/1) (1/1) (1/2)									
trogen Receptor Binding drolysis half-life (Ka, pH 7)(Hydrowin) drolysis half-life (Ka, nH 8)(Hydrowin)	No Data Observations	(3/4) (1/1)					M: 6.62 mg/L				

- Background
- Objectives
- The exercise

Workflow of the exercise

- Chemical Input
- Profiling
- Data
- Category definition
- Data gap filling

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Apply Trend analysis

1. **Go to** Data Gap Filling 2. **Highlight** the Data gap corresponding to IGC50, *Tetrahymena pyriformis* under the target chemical; 3. **Select** Trend analysis;

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Apply Trend analysis

- A message for possible data inconsistency appears
- It is recommended the log(1/mol/L) scale to be chosen

Possible data inconsistency		\times
Gap filling scale/unit Iog(1/mol/L) mol/L		
Data 72/72; Chemicals 72/72		
	OK Cancel	

• The resulting plot can be seen on next screen shot

Data Gap Filling (IGC 50 48h of *T. pyriformis*)

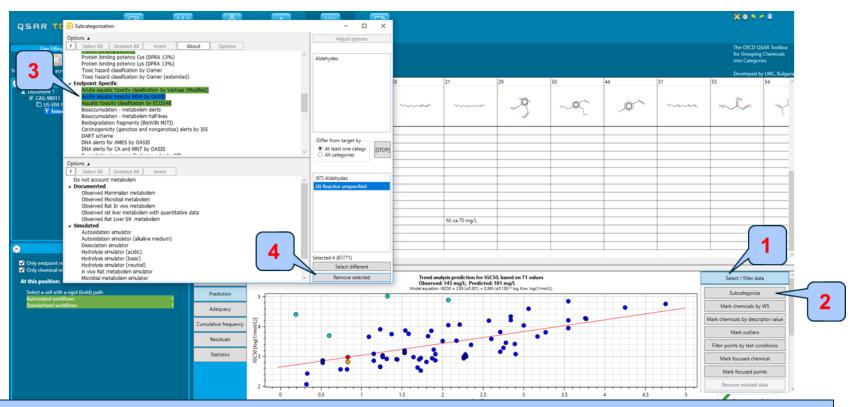
Gap Filling Workflo	2											CD QSAR Tooll iping Chemica egories
nd analysis Read across (Q)SAR Standardized A	Filter endpoint tree		1 [target]	6	10	11	14	18	21	29	Develope 30	ed by LMC, B
Documents 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Structure			njc 0	нас сна	******	H ₃ C	H3C~~~~~~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hach		
	Behaviour Biochemistry Biomass	(4/4 (1/5 (8/21										
	Cell Yield Enzyme(s) Growth EC50	(1/4 (1/2 (2/3					M: 1.5 mg/L	3				
	H IGC50 H H H H H H H H H H H H H H H H H H H											
Data Gap Filling Settings		etrahymena pyriformis (72/72 (1/6 (1/2		M: 31.7 mg/L	M: 112 mg/L	M: 3.9 mg/L	M: 14 mg/L	M: 7.96 mg/L	M: 8.2 mg/L	M: 937 mg/L	M: 191 mg/L	M: 167 r
Only endpoint relevant Only chemical relevant	<	(10/22										
t this position: Select a cell with a rigid (bold) path	Descriptors Prediction				Observed: 1	is prediction for IGC50, 45 mg/L; Predicted: 101 50 = 2.65 (±0.301) + 0.395 (±0	based on 71 values 1 mg/L 2.135) * log Kow, log(1/mol/L)					ct / filter da illing appro
Automated workflows 1 Standartized workflows 1	Adequacy				•			•	•	•	Desc	riptors / da
	Cumulative frequency	• • • • • • • • • • • • • • • • • • • •			•	•	8					odel/QSAR
	Residuals		•	• • •	•	• •	•	•				lation optio
	Residuals Statistics				•••	ø	•					ual options
	2	•	••	•	•						Mis	scellaneous
		0 0.5		1.5	2	2.5 log Kow	3	3.5	4	4.5	5	.ccept pred

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Interpreting dots on the graph

- The resulting plot outlines the experimental results of all analogues (Y axis) according to a descriptor (X axis) with LogKow being the default descriptor (see previous screen shot).
- The **RED** dot represents the predicted value for target chemical.
- The **BLUE** dots represent the experimental results available for the analogues.
- The **LIGHT BLUE** dots (see the following screen shots) represent analogues belonging to different subcategories.

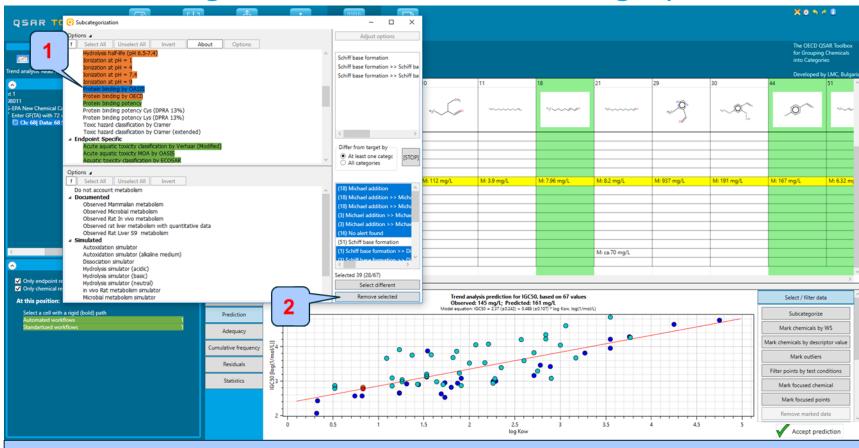
Data Gap Filling (IGC 50 48h of *T. pyriformis*) An accurate analysis of data set

- In this example, the mechanistic properties of the analogues are consistent.
- Subcategorization can be performed based on protein binding mechanisms. This is the second stage of analogue search - requiring the same interaction mechanism.
- Acute effects are associated with covalent interaction of chemicals within cell proteins, i.e. with protein binding.
- Chemicals with a different protein binding mechanism / reactions compared to the target chemical will be removed.


Data Gap Filling (IGC 50 48h of *T. pyriformis*) Subcategorisation

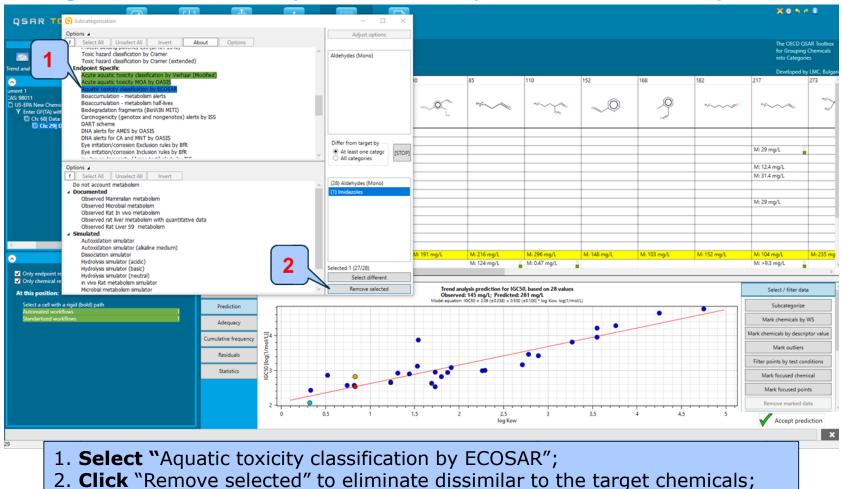
- After the available data has been retrieved, the user can then further subcategorize the results according to the following endpoint-specific subcategorizations:
 - Acute aquatic toxicity MOA by OASIS
 - Protein binding by OASIS
 - Aquatic toxicity classification by ECOSAR
- These steps are summarized in the next screen shots.

QSAR TOOLEOX


Data Gap Filling (IGC 50 48h of *T. pyriformis*)

Subcategorization 1: Acute aquatic toxicity MOA by OASIS

1. **Click** Select / filter data; 2. **Select** Subcategorize; 3. **Select** "Acute aquatic toxicity MOA by OASIS" (note there is the same suggestion of appropriate for subcategorization profiles and metabolic simulators); 4. **Click** "Remove selected" to eliminate dissimilar to the target chemicals


Data Gap Filling (IGC 50 48h of *T. pyriformis*) Subcategorization 2:Protein binding by OASIS

Select "Protein binding by OASIS";
 Click "Remove selected" to eliminate dissimilar to the target chemicals.

Data Gap Filling (IGC 50 48h of *T. pyriformis*)

Subcategorization 3: Aquatic toxicity classification by ECOSAR

QSAR TOOLEOX

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Results after subcategorisation

hc deprivation %6 J Select AI Unselect AI Invent CodeRed Unbase Afflation Junction Afflation Decetifyed Central Categories	Adjust options Pro-	1	Category definition		ing Preport							The OECD (for Groupir into Catego	ng Chemical
Substance type US-EPA New Chemical Categories												Developed	
neral Hochanotic Biodeg Banck Jank (Bown) Biodeg Banck Jank (Bown) Biodegandson protection 13 Biodegandson probably (Bown 5) Biodegandson probably (Bown 5)	Differ from target by	Filter endpoint tree		30		85 H3C	110 н _г с	152	168	182 ×16~~~~~\$PO	217	273	281
ns a Select A3 Unselect A4 Invert maccount metabolism connected Disorned Secolar Instabilism Observed Secolar Instabilism Observed Secolar Instabilism Observed Secolar Instabilism Observed Secolar Instabilism Disorned Secolar Instabilism	COSA			(1/1)							M: 29 mg/L		
Observed Rat Liver 59 metabolism subted Autoxidation simulator			liophora] Ciliatea	-									
Autoxidation simulator (akalne medium) Dissociation simulator		1 1	Tetrahymena pyriformis	(28/28)	/l: 191 mg/L	M: 216 mg/L	M: 296 mg/L	M: 148 mg/L	M: 103 mg/L	M: 152 mg/L	M: 104 mg/L	M: 235 mg/L	M: 59.4
Hydrolysis simulator (acidic) Hydrolysis simulator (basic)	Selected	Growth Inhibition		(7/17)		M: 124 mg/L	M: 0.47 mg/L				M: >9.3 mg/L		
Hydrolysis simulator (neutral) in vivo Rat metabolium simulator	Select different	Growth Rate		(11/41)		M: 16 mg/L	M: 21.5 mg/L	<u> </u>			M: >100 mg/L	<u> </u>	_
Microbal metabolism simulator	v Remove selected	Growth Rate, Cel		(1/1)							M: 18.8 mg/L		
		Growth Rate, Cel Growth Rate, Cel Growth Rate, Cel		(1/1) (1/2)									
		Growth Rate, Cel Immobilisation	Tield	(1/2)			M: 15 mg/L				M: 32 mg/L		
		Respiration Rate		(4/12)			M: 220 mg/L	8			M: 540 mg/L	8	
🔿 Data Gap	Filling Settings			(1/2)				M: 1.8 mg/L	1				
💽 Confirm		+ escriptors				Observ	ed: 145 mg/L: Predicte	GC50, based on 27 value d: 268 mg/L i20 (±0.108) * log Kow, log(1/				Select / filter d Subcategoriz	
Are you sure you wa	nt to accept this prediction?	dequacy								•	• <u> </u>	Mark chemicals b	
			4									Mark chemicals by desc	criptor val
	Yes No	esiduals										Mark outlier	\$
	3	Statistics	3		1.5	2	2.5 log Kov	3	3.5	4 4.5		Filter points by test c Mark fo Mark 1 Remove Accept pre	

1. Close "Subcategorization" window 2. **Click** "Accept prediction"; 3. **Click** "Yes" ("No" allows to continue with the subcategorization);

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model

- To assess the model accuracy use:
 - Adequacy (predictions after leave-one-out)
 - Statistics
 - Cumulative frequency
 - Residuals
- See next four screen shots

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Adequacy

Gap Filling Workflow									The OECD (for Groupin into Catego	g Chemic
analysis Read across (Q)SAR Standardized Automated									Developed	
Documents emical Categories with 72 chemicals, 72 data points state 68 Subcategoried: Actute aquatic toxicity MOA by OASIS (Data: 29 Subcategoried: Protein binding by OASIS	Filter endpoint tree	30	85 H ₃ C	110 н ₁ с _{Сн1}	152	168	182 HjC~~~~¢°	217		281
y outer 29 outerspotters From anding by Group	FCOSA	(1/1)						M: 29 mg/L		
Data Gap Filling Settings	Tetrahymena pyriformi Growth Inhibition Growth Inhibition Growth Rate, Cell Density, Biomass Growth Rate, Cell Number & Biomass Growth Rate, Cell Yield Growth Rate, Cell	is (28/29) M: 191 mg/L (7/17)	M: 216 mg/L M: 124 mg/L M: 16 mg/L	M: 296 mg/L M: 0.47 mg/L M: 21.5 mg/L M: 15 mg/L M: 15 mg/L M: 220 mg/L	M: 148 mg/L	M: 103 mg/L	M: 152 mg/L	M: 104 mg/L M: >9.3 mg/L M: >100 mg/L M: 18.8 mg/L M: 32 mg/L M: 32 mg/L M: 540 mg/L	M: 235 mg/L	M: 5
Only endpoint relevant Only chemical relevant this position: Select a cell with a rigid (bold) path Automated workflows Standartized workflows	2 Descriptors Prediction Adequacy			Adequacy of pre Model statistic R2 = 0.802, R2ad	diction aj = 0.795. s = 0.303				Select / filter da Subcategoriza Mark chemicals by Mark chemicals by desc	e y WS
	Cumulative frequency		•	••					Mark outliers	
	Statistics				•				Mark focused che	
	2.4	2.6 2.8	3 3.2	3.4 3 IGC50 (obs.) [log(1		4 4.2	2 4,4	4.6 4.8	Remove marked	

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Cumulative frequency

🔛 📼 😪	Workflow			ing 🕨 Report							The OECD Q for Grouping into Categor	g Chemia
alysis Read across (Q)SAR Standard	dized Automated	Filter endpoint tree	3	0	85	110	152	168	182	217	Developed b	by LMC, 281
ical Categories th 72 chemicals, 72 data points te 85 Subcategorized: Acute aquatic toxi	icity MOA by OASIS	Structure		~~0 <u>_</u>	нус	HC	~0	-9	MgC~~~~\$PO	нус	***	
ata: 29 Subcategorized: Protein bindin 18] Data: 28 Subcategorized: Aquatic	g oy Units toxicity classification by ECOSA		(1/1)							M: 29 mg/L		
		Citatea Citatea Citatea Growth Inhibition Growth Rate, Cell Density, Biomass Growth Rate, Cell Number & Biomass Growth Rate, Cell Number & Biomass Growth Rate, Cell Number A	(7/17) (11/41) (1/1) (1/1) (1/2)	4: 191 mg/L	M: 216 mg/L M: 124 mg/L M: 16 mg/L	M: 296 mg/L M: 0.47 mg/L M: 21.5 mg/L	M: 148 mg/L	M: 103 mg/L	M: 152 mg/L	M: 104 mg/L M: >9.3 mg/L M: >100 mg/L M: 18.8 mg/L	M: 235 mg/L	M:
Data Gap Filling S	Settings	Grown Rate Cert Immobilisation Grown Rate Zero Immobilisation	(1/2) (2/2) (4/12) (1/2)			M: 15 mg/L M: 220 mg/L	M: 1.8 mg/L	•		M: 32 mg/L M: 540 mg/L		+
inly chemical relevant	1	Descriptors 1				95% of Residuals ≤ 0.49	92, log(1/mol/L)				Select / filter da	
elect a cell with a rigid (bold) path utomated workflows landartized workflows		Prediction Adequacy Cumulative frequency									Subcategorize Mark chemicals by Mark chemicals by descr	y WS
		Residuals									Mark outliers Filter points by test co	onditio
											Mark focused cher Mark focused poi Remove marked o	ints
		0	0.1	0.2	0.3	0.4 0. Residuals, Y - 1		0.7	0.8	0.9	Accept pre	

1. **Click** "Cumulative frequency; The residuals abs (obs-predicted) for 95% of analogues are comparable with the variation of experimental data.

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Residuals

Cap Filling Workflow Cap Filling Cap Filli										The OECD (for Groupin into Catego Developed	ig Chemic pries
Documents	Filter endpoint tree		30	85	110	152	168	182	217	273	281
mical Categories with 72 chemicals, 72 data points ta: 68 Subcategorized: Acute aquatic toxicity MCA by OASIS Data: 29 Subcategorized: Protein Indirigh By OASIS	Structure		~~•••	н₃с	4/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0	9	40~~~50	Hyć	*r Mar	-
Longe La soboensychicke intern menny up voord 28] Data: 28 Subcategorized: Aquatic toxicity classification by ECOSA		Protozoa 🏳 Ciliophora	(1/1)						M: 29 mg/L		
		Ciliatea Tetrahymena pyriformis	s (28/29) M: 191 mg/L	M: 216 mg/L	M: 296 mg/L	M: 148 mg/L	M: 103 mg/L	M: 152 mg/L	M: 104 mg/L	M: 235 mg/L	M: 5
	Descriptors			Distribu	tion of residuals for IGC	50 vs descriptors in use	,			Select / filter da	ata
	Prediction			•						Subcategorize	e
	Adequacy	•								Mark chemicals b	
	risequery										riptor v
Data Gap Filling Settings	Consulation for success	1								Mark chemicals by desc	
Dnly endpoint relevant	Cumulative frequency	201								Mark chemicals by desc Mark outliers	5
Only endpoint relevant Only chemical relevant	Residuals	[[] 0.5 								-	
nly endpoint relevant nly chemical relevant his position: elect a cell with a rigid (boki) path utomated workfloos		[log(1/mol	•				•	•		Mark outliers Filter points by test of Mark focused che	onditio
hty endpoint relevant hty chemical relevant htis position: elect a cell with a rigid (bokl) path utomated workflows 1	Residuals	log(1/mol		•			•	•		Mark outliers Filter points by test co Mark focused che Mark focused po	ondition mical pints
nly endpoint relevant nly chemical relevant his position: elect a cell with a rigid (boki) path utomated workfloos	Residuals	log(1/mol					••	•		Mark outliers Filter points by test co Mark focused che Mark focused po Remove marked	ondition mical pints data
hty endpoint relevant hty chemical relevant htis position: elect a cell with a rigid (bokl) path utomated workflows 1	Residuals	[log(1/mol					••	•	•	Mark outliers Filter points by test co Mark focused che Mark focused po Remove marked Clear existing m	onditior mical bints data arks
brily endpoint relevant Drily chemical relevant this position: elect a cell with a rigid (bokl) path uutomated workflows 1	Residuals	log(1/mol		•			•		•	Mark outlierr Filter points by test cr Mark focused che Mark focused po Remove marked Clear existing m Gap filling appro	onditior mical bints data arks bach
hty endpoint relevant hty chemical relevant htis position: elect a cell with a rigid (bokl) path utomated workflows 1	Residuals	log(1/mol		•			••		•	Mark outlierr Filter points by test cr Mark focused che Mark focused po Remove marked Clear existing m Gap filling appre Descriptors / di	ondition mical bints data arks pach ata
Data Gap Filling Settings Drby enclosint relevant Drby chemical relevant bib position: Select a cell with a rigid (bokt) path futomated workflows fandartized workflows	Residuals	log(1/mol		•			••		•	Mark outlierr Filter points by test cr Mark focused che Mark focused po Remove marked Clear existing m Gap filling appro	ondition mical bints data arks bach ata

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Statistics

Documents Filter endpoint tree 30 85 110 152 166 182 217 273 (Pamical Categories (Pawith 72 data points (Pawith 22 data points (Pawith 22 data points (Pawith 22 data points) Situcture	Q S R T D D L D D X Input Profile Sap Filing Workflow Cap Filing Cap Filing		Category definition Data G	ap Filing							for Group into Categ	
Chancel Looping		Filter endpoint tree		30	85	110	152	168	182	217		281
C Q 2 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 2 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification by (COS) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation discoletation (CQ) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation (CQ) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation (CQ) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation (CQ) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation (CQ) Q Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation (CQ) Q Q 20 Date 25 Solectopaties Aquade tasking classification (CQ) Q Q 20 Date 25 Solectopaties Aquade tasking classification discoletation (CQ) Q Q 20 Solectopaties Aquade tasking classification (CQ) Q Q 20 Solectopaties Aquade tasking classificati	Chemical Categories TA) with 72 chemicals, 72 data points J Data 68 Substeppirzed Acute aquatic toxicity MOA by OASIS				нзс		~0				ne La	~
Data Cap Tallory Settings Settical characteristics A model Settical characteristics Setticharacteristics Settical characteristics	24) Usta: 25 Subcategorized: Protein binding by UKSIS On: 28] Data: 28 Subcategorized: Aquatic toxicity classification by ECOSA		rotozoa ⊐ Ciliophora	/1)						M: 29 mg/L		
Data Gap Falling Settings Number of data points, (h) 27 Data Cap Falling Settings Subcategorits Subcategorits Data Cap Falling Settings Data Cap Falling Settings Subcategorits			× (*)			16.0.17 mail		M: 103 mg/L	M: 152 mg/L	-	M: 235 mg/L	M: 59.4
Adequacy Adequacy Adequacy Codificient of determination. (R2adj) N/A Mark chemicals by W Codificient of determination. Codificient of determination. (R2adj) N/A Mark chemicals by W Codificient of determination. Codificient of determination. (R2adj) N/A Mark chemicals by W Codificient of determination.		Descriptors				27	el				Select / filter	data
Data Cap Filling Settings Adequacy Coefficient of determination - leave one out. (02) N/A Mark chemical by W Sol Only endpoint relevant. Comulative frequency Comulative frequency Sample standard deviation of residuals, (5A) 0.291 Mark chemical by W At this position: Sample standard deviation of residuals, (5A) 0.303 0.303 Mark chemical by description Automated workflows Sample standard deviation of residuals, (5A) 0.303 Mark chemical by description Automated workflows Sample standard deviation of residuals, (5A) 0.303 Mark chemical by description Dol		Prediction									Subcategor	ize
Data Casp Filing Settings Adequaky Certification of regization of regiz	>										Mark chemicals	by WS
Chy endpoint relevant. Cumulative frequency. Sandard deviation of residuals, (sh) 0.291 Chy chemical relevant. Residuals Sandard deviation of residuals, (sh) 0.303 Select a cell with arigid (bold) path Automated workflows At this position: Sandard deviation of residuals, (sh) 0.303 Sandard treated workflows Sandard deviation of residuals, (sh) 0.001 102 Differ function, (f) IDE Mark contiers Differ function, (f) IDE Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark contiers Differ function, (f) IDE Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark contiers Differ function, (f) Intercept Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark focused point Image: Sandard deviation of residuals, (sh) 0.291 Mark focused point Image: Sandard deviation of residuals,	Data Gan Filling Settings	Adequacy		one out, (QZ)								
Only dempionit relevant Sample standart deviation of residuals, (s) 0.303 Mark outliers Only dempionit relevant Fiber function, (f) 102 Fiber function, (f) 102 Select a cell with a rigid (bold) path Statistics Fiber function, (f) 102 Mark outliers Select a cell with a rigid (bold) path Fiber function, (f) 102 Mark outliers Mark outliers Automated workflows Statistics Fiber function, (f) 102 Mark outliers Mark outliers Select a cell with a rigid (bold) path Mark focused chemic 102 Mark focused chemic Mark focused chemic Automated workflows Statistics Intercept Intercept Mark focused chemic 1 Coeff, value 2.12 Coeff, value Coeff, value Coeff, value Coeff, value Coeff, value Coeff, value Gap filling approact 0 - madel descriptor Intercept No Gap filling approact Descriptors / data 0 - coeff, value 0.200 Coeff, value 0.200 Coeff value Calculation options 0 - coeff, value 0.200 Solo Coef	outo oup mining occordy.	Cumulative frequency									Mark chemicals by des	scriptor val
Attis position: Statistics Fiber function (P) 102 Attis position: Ether function (P) 606 (95.0%) Fiber points by test cont Automated workflows Image: Cell and test points Fiber points by test cont Mark focused chemic Standarized workflows Image: Cell and test points Image: Cell and test points Mark focused chemic Standarized workflows Image: Cell and test points Image: Cell and test points Mark focused chemic Standarized workflows Image: Cell and test points Image: Cell and test points Image: Cell and test points Mark focused chemic Standarized workflows Image: Cell and test points Image: Cell and test points Image: Cell and test points Mark focused chemic Standarized workflows Image: Cell and test points Image: Cell and test points Image: Cell and test points Mark focused chemic Standarized workflows Image: Cell and test points Mark focused point Standarized workflows Image: Cell and test points	Only endpoint relevant	cumulative inequency		le (a)							Mark auto	
At this position: Statistics Fisher treshold for statistical significance. (Fa) 6.66 (95.0%) Filter points by test conditions Statistics Statistics Fisher treshold for statistical significance. (Fa) 6.66 (95.0%) Mark focused chemic Standartized workflows Intercept Intercept Mark focused chemic No - coeff. range 50.256 Clear existing mark - significance 0.249 vs b1 Gap filling approach b1 - model descriptor log Kow Gap filling approach - coeff. range 50.06 50.06 Gap filling approach - significance 0.520 Gap filling approach Mark dould/Gap Rev - significance 50.06 Gap filling approach Gap filling approach - significance 50.06 Gap filling approach Gap filling approach - significance 50.06 Gap filling approach Gap filling approach - significance 50.06 Gap filling approach Gap filling approach - significance No Gap filling approach Gap filling approach	Only chemical relevant	Residuals		ia, (a)							Mark Outlie	0.0
Statistics Image: Statistics <td>At this position:</td> <td></td> <td></td> <td>nce (Fa)</td> <td></td> <td></td> <td>09()</td> <td></td> <td></td> <td></td> <td>Filter points by test</td> <td>conditions</td>	At this position:			nce (Fa)			09()				Filter points by test	conditions
Automated workflows Sandartized workflows b b model descriptor coeff. range coeff.		Statistics										
Standartized workflows b0 Intercept Mark focused point • model descriptor intercept Remove marked dat • coeff. range ±0.256 Clear existing mark • oodel descriptor 0.249 vs b1 Gap filling approach b1 - - • model descriptor log Kow Descriptors / data • coeff. range ±0.206 Model/QSAR • coeff. range ±0.006 Caluation options	Select a cell with a rigid (bold) path Automated workflows										Mark focused ch	hemical
1 - coeff. value 2.12 Remove marked data - coeff. range ±0.256 Clear existing marks - max covariation 0.249 vs b1 Gap filling approact b1 - model descriptor log Kow Descriptors / data - coeff. range ±0.250 Model/QSAR - coeff. range ±0.056 Clear existing marks			60								Mark focused	points
1 - coeff. range ±0.256 Clear existing mark - significance No Clear existing mark - index descriptor 0.26 /vs b1 Clear existing mark b1 - model descriptor Descriptors / data - coeff. range 0.50 Model/QSAR - coeff. range 50.06 Clear existing mark - indel descriptor log Kow Descriptors / data - coeff. range 0.50.06 Model/QSAR - significance No Clear existing mark		-	- model descriptor				t					
• significance No Clear existing mark - max covariation 0.249 to 1 Gap filling approact b1 - model descriptor Iog Kow - model descriptor Iog Kow Model/QSAR - coeff, range - 5006 Caluation options - significance No Caluation options			- coeff. value								Remove marke	d data
											Clear existing r	marks
b1 Image by the constraint of the co		-										
- model descriptor log Kow Model/QSAR • coeff: value 0.520 Model/QSAR • coeff: range 50.06 Calculation options - significance No Calculation options			- max covariation			0.249 vs	b1				Gap filling app	roach
- model descriptor log Kow Model/QSAR - coeff: value 0.520 Model/QSAR - coeff: range 50.106 Calculation options - significance No Calculation options			1.4									
- coeff: value 0.520 Model/QSAR - coeff: range ±0.106 Calculation options - significance No Calculation options						In the second					Descriptors /	data
- Colini Handa Colini Handa - Colifi range E0.106 - significance No											Model/QS/	AR
- significance No Calculation options												
											Calculation op	otions
							ь0				Accept p	rediction

1. Click "Statistics";

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Results after subcategorisation

SAR TOOLBOX		Filing + Report					X 0 % /	• (2)
Gap Filling Workflow Cap Filling Control Contr							The OECD Q for Grouping into Categori	g Chemic ries
Documents	tetr	1 [target] 10	11 21	30 8	5	110	Developed b	168
emical Categories with 72 chemicals, 72 data points ata 68 Subcategorized: Acute aquatic toxicity MOA by OASIS 9 Data: 29 Subcategorized: Protein binding by OASIS	Structure	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n/		H3C	нусуство	~0	
z 28] Data: 28 Subcategorized: Aquatic toxicity classification by ECOSA	Austic Toxicity AW SW							
	Ciliatea Tetrahymena pyriformis (28/29) Growth Inhibition (7/17)	M: 145 mg/L M: 112 mg/L T: 268 (60.2+1.2E+03) n	M: 3.9 mg/L M: 8.2 mg/L		M: 216 mg/L M: 124 mg/L	M: 296 mg/L M: 0.47 mg/L	M: 148 mg/L	M: 1
	Population (6/49)	M: 0.59 mg/L	M: 318 mg/L		M: 25 mg/L		M: 131 (97.7+224) m	
Data Gap Filling Settings Only endpoint relevant Only chemical relevant	Descriptors Prediction	Tre Obs Model eq	nd analysis prediction for IGC50, based on 27 served: 145 mg/L; Predicted: 268 mg/L uation: IGC50 = 2.12 (±0.256) + 0.520 (±0.106) * log Kow	values			Select / fi Gap filling	approa
this position: Select a cell with a rigid (bold) path Automated workflows 1 Standartized workflows 1	Adequacy Cumulative frequency			• •			Descripto Model/	/QSAR
	Residuals Statistics Statist			•			Calculation Visual o	<u> </u>
	Statistics		•				Miscella	
	0.5	1 1.5 2	2.5 3 log Kow	3.5	4	4.5	5 Accep	ot pre

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Save the derived QSAR model

- To save the new regression model follow these steps:
 - Go to the last row on the Document tree
 - Click on "Model/QSAR"
 - Select Save model
 - Enter the model name and fill editable fields if necessary
 - Click on OK

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Save the derived QSAR model

analysis Read across (QISAR Standardized Automated Documents	Customize model content Wizard pages			 30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	85 H3C	110	152	168
with 72 chemicals, 72 data points ata: 68 Subcategorized: Acute aquatic toxicity MOA by OASIS 9 Data: 29 Subcategorized: Protein binding by OASIS	(Q)SAR	Title	IGC50_Tetrahymena_Furfural	~	L.		CH1		
a: 28] Data: 28 Subcategorized: Aquatic toxicity classificatio		Version Other related models							-
	Endpoint	Other related models							-
	Algorithm	Software coding the model	Automatically populated by the system	_					-
	Domain								+
	Training set			N	l: 191 mg/L	M: 216 mg/L	M: 296 mg/L	M: 148 mg/L	M:
	Test set					M: 124 mg/L M: 25 mg/L	M: 0.47 mg/L	M: 131 (97.7+224) m	
	Mechanistic interpretation					M: 25 mg/L		M: 151 (97.7+224) m	
				on 27 values				1	lter data approa
Data Gap Filling Settings Only endpoint relevant Only chemical relevant t this position: Select a cell with a rigid (bold) path	Miscellaneous					•		Descriptor Model/	
Only endpoint relevant Only chemical relevant : this position:		×		4	•••	•	2		QSAR omain

1. **Click** "Model/QSAR"; 2. **Select** "Save model"; 3. **Type** Name of the model and fill fields in the Wizard if necessary (Use Next/Back buttons to navigate within it); 4. **Click** "Save model"; 5. **Click** OK on the message;

Outlook

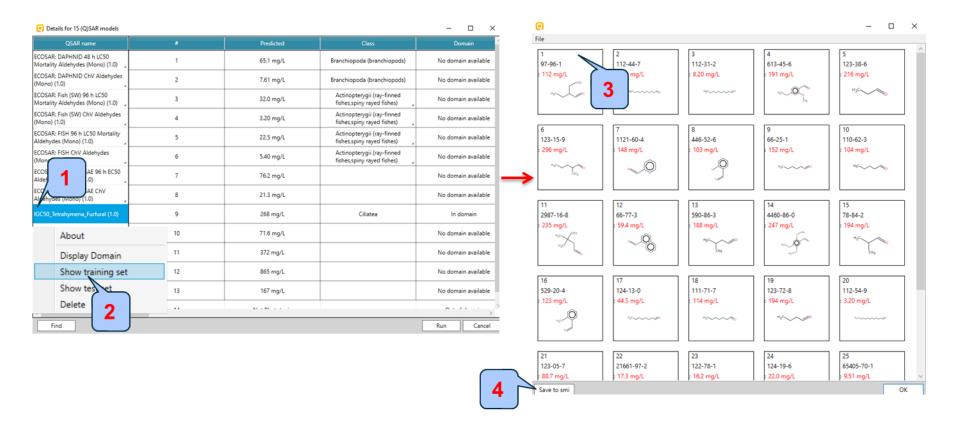
- Background
- Objectives
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data gap filling
 - QSAR model

Data Gap Filling How to see the derived QSAR?

1	nput	Wing ▶ Report				The OECD QS/ for Grouping (into Categorie
nalysis Read across (Q)SAR Star	sted 1 [target] 2	Details for 14 (Q)SAR models				- 🗆 × 10
Document 1 # CAS: 98011		QSAR name	*	Predicted	Class	Domain ^
US-EPA New Chemical Categories	Structure	Mortality Aldehydes (Mono) (1.0)	'	op.n mg/c	oranichiopoda (oranichiopods)	NO COMAIN available
 Finter GF(TA) with 72 chemicals, 72 c Ch: 68 Data: 68 Subcategorized: Ch: 29 Data: 29 Subcategori 		ECOSAR: DAPHNID ChV Aldehydes (Mono) (1.0)	2	7.61 mg/L	Branchiopoda (branchiopods)	No domain available
Ch: 28 Data: 28 Subcategori	Ecotoxicological Information Aquatic Toxicity	ECOSAR: Fish (SW) 96 h LC50 Mortality Aldehydes (Mono) (1.0)	3	32.0 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available
	Growth (3/9)	ECOSAR: Fish (SW) ChV Aldehydes (Mono) (1.0)	4	3.20 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available
	EC50 (10/18) 2	ECOSAR: FISH 96 h LC50 Mortality Aldehydes (Mono) (1.0)	5	22.5 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available
	48 h	ECOSAR: FISH ChV Aldehydes (Mono) (1.0)	6	5.40 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available
	Ciliophora	ECOSAR: GREEN ALGAE 96 h EC50 Aldehydes (Mono) (1.0)	7	76.2 mg/L		No domain available
	Tetrahymena pyriformis (72/73) M: 145 mg/L T: 268 (60.2+1.2E+03) n	ECOSAR: GREEN ALGAE ChV Aldebydes (Mono) (1.0)	8	21.3 mg/L		No domain available
	Growth Inhibition (23/65) Population (37/312) M: 0.59 mg/L	IGC50_Tetrahymena_Furfural (1.0)	9	268 mg/L	Ciliatea	In domain
Data Gap Filling Settings	Human Health Hazards Genetic Toxicity	M1 - LC50 - Pimephales promelas (fathead minnow) (1.0)	10	71.6 mg/L		No domain available
ly endpoint relevant ly chemical relevant	In Vitro Microculture Tetrazolium (MTT) Assay (1/2)	M2 - LC50 - Pimephales promelas (fathead minnow) (1.0)	11	372 mg/L		No domain available
is position:		M3 - LC50 - Pimephales promelas (fathead minnow) (1.0)	12	865 mg/L		No domain available
lect a cell with a rigid (bold) path tomated workflows 1		M4 - LC50 - Pimephales promelas (fathead minnow) (1.0)	13	167 mg/L		No domain available
indartized workflows 1		Photoinduced toxicity of PAHs (1.0)	14	Not Phototoxic		Out of domain
		<				· · · ·
		Find				Run Cancel


1. Select a non-Gap filling list from the document tree; 2. Note the accepted prediction is inserted into data matrix 3. **Click** "(Q)SAR"; 4. The derived QSAR is listed in the panel with Relevant (Q)SAR models.

Data Gap Filling How to see the derived QSAR?

As seen in the next five screen shots the derived model can be used to:

- Visualize training set of the model:
- Visualize the domain of the model:
- Visualize whether a chemical is in the applicability domain of the model:
- Enter in Data Gap filling
- Perform predictions for:
 - Selected chemical
 - All chemicals (in the matrix)
 - Chemicals in domain:

Data Gap Filling Visualisation of the training set

1. **Right Click** on the derived QSAR model; 2. **Select** Show training Set; 3. Note the experimental data is displayed under CAS# of each chemical; 4. The training set can be saved as *.smi file.

Data Gap Filling Visualisation of model domain

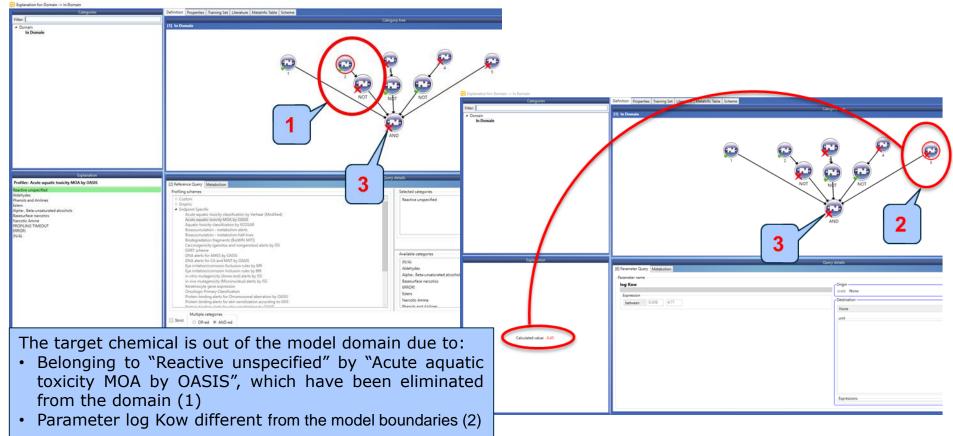
			Explanation for: Domain	-> In Domain			- a ×
				Categories		Definition Properties Training Set Literature MetaInfo Table Scheme	
			Filter:			Category tree	
			 Domain In Domain 			[1] In Domain	
Details fo	15 (Q)SAR models		In Domain		- 0 ×	5	ADD DEL AND
	JAR name		Predicted	Class	Domain		
DSAR: DAP stality Alde	NID 48 h LC50 hydes (Mono) (1.0)	, 1	65.1 mg/L	Branchiopoda (branchiopods)	No domain available		OR
ono) (1.0)	NID ChV Aldehydes	2	7.61 mg/L	Branchiopoda (branchiopods)	No domain available		Сору
ortality Alde	SW) 96 h LC50 tydes (Mono) (1.0)	3	32.0 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available		Paste
OSAR: Fish ono) (1.0)	SW) ChV Aldehydes	. 4	3.20 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available	NOT NOT NOT	Redraw
4	0 Mortality hydes	5	22.5 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available	4	10001011
	96 h EC50	6	5.40 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available	4 AND 3	
	N ALGAE ChV	, 7	762 mg/L		No domain available		
N.	ino) (1.0) mena_Furfural (1.0)	, °	21.3 mg/L 268 mg/L	Cilatea	In domain		
	nephales promelas		2 71.6 mg/L		No domain available		
	About		372 mg/L		No domain available	Query details [1] Reference Query Metabolism	
-	Display Do	main	865 mg/L		No domain available	Profiling schemes Selected categories	
_	show traini		167 mg/L		No domain available	P Custom P Empiric Aldehydes (Acute toxicity)	
	Show test s	-	10 C M 1 C M		···· · · · · · · · · · · · · · · · · ·	P Endpoint Specific P General Mechanistic	
	Delete				Run Cancel	Predefined Database Affiliation Invertiony Affiliation	
	Velete					OECD HPV Chemical Categories	
						US-EPA New Ochemical Categories	
						Available categories	
						(N/A)	^
						Acid Chlorides Acrylamides	
						Acylates/Methacylates (Acute toxicity)	
						Acrylates/Methacrylates (Chronic toxicity)	
						Aldehydes (Chronic toxicity)	
						Aliphatic Amines Alifonoti Inse	~
						Multiple categories	
						Strict OR-ed @ AND-ed	

1. Right click on the derived QSAR model; 2. **Select** "Display Domain"; 3. Note the boundaries of the domain are combined logically; 4. If the chemical answers the query of the domain then the current query is a labelled with **GREEN** tick; 5. Otherwise is labelled with **RED** cross.

Data Gap Filling Visualisation whether a chemical is in the domain of the model

SAR TOOLBO	X Finput > Profiling	Data Category definition	01010 01 0 10100 on	ing > Report				×	
Gap Filling	Workflow							for Gr	ECD QSAR Too ouping Chemic ategories
analysis Read across (Q) AR Documents	Standardized Automated Filter endpoint tree	94	95	Details for 21 (Q)SAR models	00	00 100	103	X	oped by LMC, I
it 1 irahymena.tb4		co so		QSAR name		Predicted	Class	Domain ^	
rahymena.tb4 18011 5-EPA New Chemical G	Ire		Hichard	Imidazoles (1.0)	v	91.1 mg/L	fishes, spiny rayed fishes)	INO COMBILIT AVAILABLE	0
Enter GF(TA) with 72 cl Ch: 68 Data: 68 Subcare Ch: 68 Data: 29 Sub-		×	_	ECOSAR: FISH ChV Aldehydes (Mono) (1.0)	9	26.3 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available	
Ch: 28 Data: 28 Sub-	Tanytarsus dissimilis; larvae; insect (1/1) Tetrahymena pyriformis			ECOSAR: FISH ChV Imidazoles (1.0)	10	0.396 mg/L	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available	
	Ciliatea			ECOSAR: GREEN ALGAE 96 h EC50 Aldehydes (Mono) (1.0)	11	341 mg/L		No domain available	
	Protozoa EC50 (4/6) UC50 (20/36)			ECOSAR: GREEN ALGAE 96 h EC50 Imidazoles (1.0)	12	0.622 mg/L		No domain available	
	- G IGC50 (20136)		-	ECOSAR: GREEN ALGAE ChV Aldehydes (Mono) (1.0)	13	82.0 mg/L		No domain available	
	Growth 48 h (72/73)	V	_	ECOSAR: GREEN ALGAE ChV Imidazoles (1.0)	14	0.715 mg/L		No domain available	
	Undefined Endpoint (1/4) Tetrahymena thermophila (3/19)			ECOSAR: MYSID (SW) 96 h LC50 Mortality Imidazoles (1.0)	15	15.3 mg/L	Malacostraca	No domain available	
>	Texadina sp. (1/5) Thalassiosira pseudonana (1/2)			IGC50_Tetrahymena_Furfural (1.0)		990 mg/L	Ciliatea	Out of domain	
Data Gap Filling Settings	Trachinotus carolinus (1/10) Trichodina jadranica (1/5) Turbellaria (1/1)			(far About	3	93.5 mg/L		No domain available	
Only chemical relevant	Uca pugliator (1/1) Ulva pertusa (1/2)			(fai Display Domai	in /	2.17E3 mg/L		No domain available	
elect a cell with a rig utomated workflov1	Undefined Test organisms (species) (1/2) Uronema parduczi (6/12)			(fa) Show training	set	5.5E3 mg/L		No domain available	-
itandartized workfic1	Uronema parduzci (3/3)			(fa) Show test set		850 mg/L		No domain available	
	Vibrio fischeri (19/22) Vibrio fisheri (1/1)			Ph Delete		Not Phototoxic		Out of domain	
	+ Vibrio harveyi (marine organism) (1/2)			<				>	
	Sediment toxicity (3/10)		-	Find				Run Cancel	
	Terrestrial Toxicity (68/1300)		-						
	+ Human Health Hazards (373/11400)		M: 1.56E+03 mg/	kg M: 30 %	M: 122 µM	M: 1.05E-	+03 mg/kg		
	Profile					•			
	- Predefined								
	Database Affiliation								
	Inventory Affiliation								

Highlight the cell of one of the analogues (e.g., chemical # 94 in the data matrix;
 Click on "(Q)SAR"; 3. Right click above the model; 3. Left click on Display domain (see next screen shot).


Data Gap Filling

Visualisation whether a chemical is in the domain of the model

- The chemical is an aldehyde as required by US-EPA categorization group (boundary 1 on next screen shot).
- The chemical is an aldehyde as required by Acute aquatic toxicity MOA by OASIS group (boundary 2).
- It can react with protein by Schiff-base formation and should not belong to any of the eliminated mechanistic domains according to Protein binding by OASIS (boundary 3):
 - Michael addition (a,β-Aldehydes, Conjugated systems with electron withdrawing groups)
 - SNAr (Activated aryl and heteroaryl compounds)
 - Schiff base formation (Bis aldehydes, Di-substituted a,β-unsaturated aldehydes and Aromatic carbonyl compounds)
- The chemical is an aldehyde as required by Aquatic toxicity classification by ECOSAR (boundary 4).
- Another requirement is Log Kow to be >=0.308 and <= 4.77 (boundary 5):

Data Gap Filling

Visualisation whether a chemical is in the domain of the model

The definitive designation for belonging or not to the domain is the collectible boundary (3) which is red crossed in case of "Out of domain" (green checked in case of "In domain")

Data Gap Filling Enter Gap filling

Go to target chemical and call (Q)SAR; 1. **Mark** the model; 2. **Click** Run; 3. **Select** Enter Gap filling; 4. **Click** OK; 5. You are in Gap filling and can operate;

Data Gap Filling

Perform prediction for chemicals in domain (for selected chemical and all chemicals - analogically)

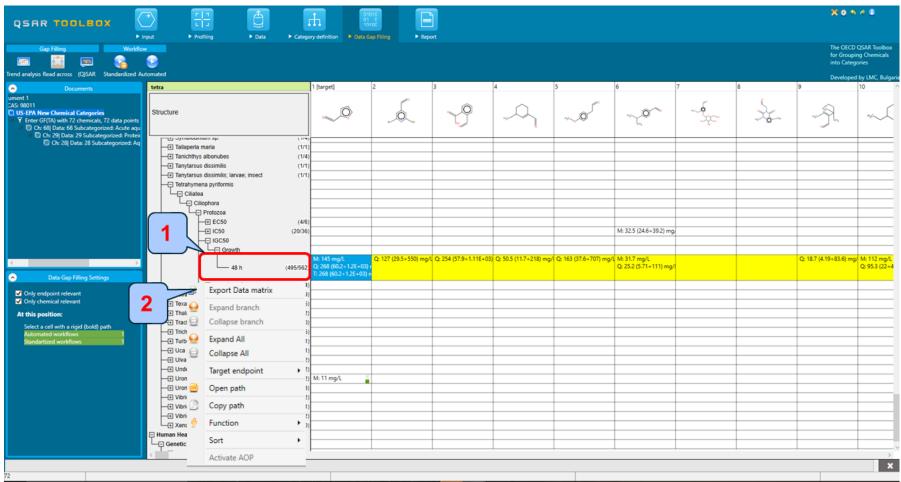
Gap Filling Workflo	2									D QSAR Toolbi ping Chemical egories
analysis Read across (Q)SAR Standardized A						· · · ·		-	Develop	ed by LMC, Bu
Documents it 1	tetra	Details for 14 (Q)SAR models				- 0 X		8	9	10
98011 S-EPA New Chemical Categories	Structure	QSAR name	0	Predicted	Class	Domain	~6	34	a	322
Enter GF(TA) with 72 chemicals, 72 data points Ch: 68 Data: 68 Subcategorized: Acute aqu		ECOSAR: DAPHNID 48 h LC50 Mortality Aldehydes (Mono) (1.0)	1	497 mg/L	Branchiopoda (branchiopods)	No domain available	te	-0	14	no-
Ch: 29 Data: 29 Subcategorized: Proteir Ch: 28 Data: 28 Subcategorized: Aq	Ecotoxicological Inform	ECOSAR: DAPHNID ChV Aldehydes (Mono) (1.0)	2	62.9 mg/L	Branchiopoda (branchiopods)	No domain available		-		
	Aquatic Toxicity	ECOSAR: Fish (SW) 96 h LC50 Mortality Aldehydes (Mono) (1.0)	3	301 mg/L	Actinopterygii (ray-finned fishes, spiny rayed fishes)	No domain available				_
	Growth	ECOSAR: Fish (SW) ChV Aldehydes (Mono) (1.0)	4	32.3 mn/l Select QSAR method — — X	Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available				
	-= IGC50 -= 48 h	ECOSAR: FISH 96 h LC50 Mortality Aldehydes (Mono) (1.0)	5		Actinopterygii (ray-finned fishes,spiny rayed fishes)	No domain available				-
		COSAR: FISH ChV Aldehydes	6		Actinopterygii (ray-finned lishes,spiny rayed fishes)	No domain available				
		ECOSAR: GREEN ALGAE 96 h EC50 Aldehydes (Mono) (1.0)	3	Predict selected chemical Predict all chemicals		No domain available				M: 112
	Growth Inhibition	ECOSAR: GREEN ALGAE ChV Aldehydes (Mono) (1.0)		Predict chemicals in domain		No domain available				_
Data Gap Filling Settings	Population	IGC50_Tetrahymena_Furfural (1.0)	9		Ciliatea	In domain				_
Only endpoint relevant	Genet	M1 - LC50 - Pimephales promelas (fathead minnow) (1.0)	10	OK Cance		No domain available				_
Only chemical relevant this position:	1	M2 - LC50 - Pimephales promelas (fathead minnow) (1.0)	11	265		No domain available				
Select a cell with a rigid (bold) path Automated workflows 1		M3 - LC50 - Pimephales promelas (fathead minnow) (1.0)	12	587 4		No domain available	5			
tandartized workflows 1		M4 - LC50 - Pimephales promelas (fathead minnow) (1.0)	13	130 mg/L		No domain a 2				
				AL		1				

1. Mark the model; 2. Click Run; 3. Select Predict Chemicals in domain; 4. Click OK;

Data Gap Filling Perform prediction for chemicals in domain

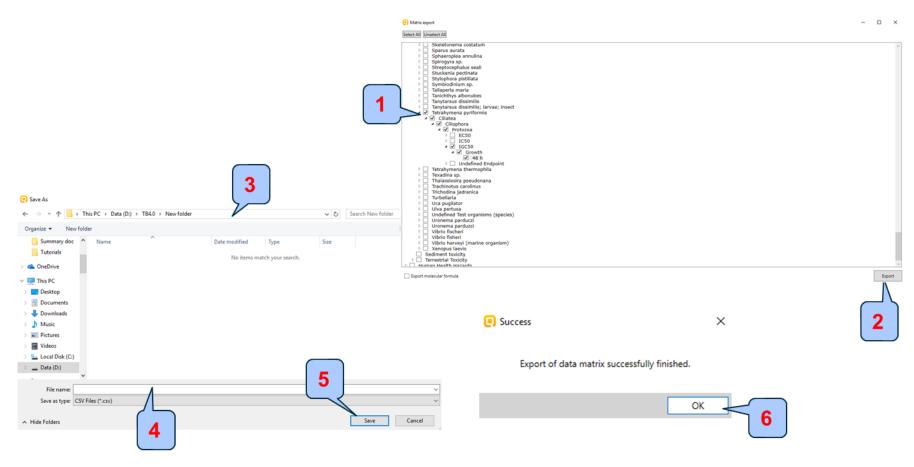
QSAR TOOLBOX		Profiling > Data		Dry definition	ap Filling > Rep							× • •	h A 🛛
Gap Filling Workflow	2											for Group into Categ	O QSAR Toolbo bing Chemicals gories ed by LMC, Bulg
Documents	tetra			1 [target]	2	3	4	5	6	7	8	9	10
iment 1 AS: 98011 US-EPA New Chemical Categories ▲ ▼ Enter GF(IA) with 72 chemicals, 72 data points ▲ ▼ Che 68 Data 68 Subcategorized: Acute aqu ↓ ■ The 1940 Data 20 Subcategorized: Route agu	Structure			~Q	Í.	Ŷ	***	~_0	"/ _ O	~ Spe		~J.	Hyc.
Ch: 29 Data: 29 Subcategorized: Protein	C Tetrahym C Ciliat C Ciliat	la maria nys albonubes sus dissimilis sus dissimilis; larvae; insect nena pyriformis	(1/1) (1/4) (1/1) (1/1) (1/1) (4/6) (20/36)						M: 32.5 (24.6+39.2) mg				
Data Gap Filling Settings		48 h	(495/562)	M: 145 mg/L Q: 268 (60.2+1.2E+03) T: 268 (60.2+1.2E+03) (Q: 254 (57.9+1.11E+03) Q: 50.5 (11.7+218) mg	/l Q: 163 (37.6+707) mg	/L M: 31.7 mg/L Q: 25.2 (5.71+111) mg/			Q: 18.7 (4.19+83.6) mç	g/ M: 112 mg Q: 95.3 (22
		Undefined Endpoint	(1/4)										
 Only endpoint relevant Only chemical relevant 		nena thermophila	(3/19)										
	Texadina Thalacci	a sp. iosira pseudonana	(1/5) (1/2)										
At this position:	+ Trachino		(1/10)										-
Select a cell with a rigid (bold) path Automated workflows	- Trichodin		(1/5)										-
Standartized workflows 1	- Turbellar		(1/1)										
	- 🕂 Uca pug	ilator	(1/1))									
	- + Ulva per		(1/2)										
		ed Test organisms (species)	(1/2)										
	- Uronema			M: 11 mg/L									
	Uronema Vibrio fis		(3/3) (19/22)										
	+ Vibrio fis		(19/22)										
		arveyi (marine organism)	(1/2)										-
	T Xenopus		(3/10)										-
	Human Health I		(2.10)										
	Genetic Tox												
	- T -			-									-

The process of applying the model is indicated by status bar on the bottom of the window. The predictions are placed on the matrix. Note there are different signs for the origin of the data: M for experimental data, T for result of Trend analysis, Q for originated from QSAR data.


Outlook

- Background
- Objectives
- The exercise

Workflow of the exercise


- Input
- Profiling
- Data
- Category definition
- Data gap filling
- QSAR model
- Export QSAR prediction

- The predictions for the chemicals in the matrix can be exported into a file.
- In the Endpoint tree right click on Tetrahymena pyriformis (for the endpoint IGC50 48h for Tetrahymena pyriformis) and select Export Data matrix from the context menu (see next three screen shots).

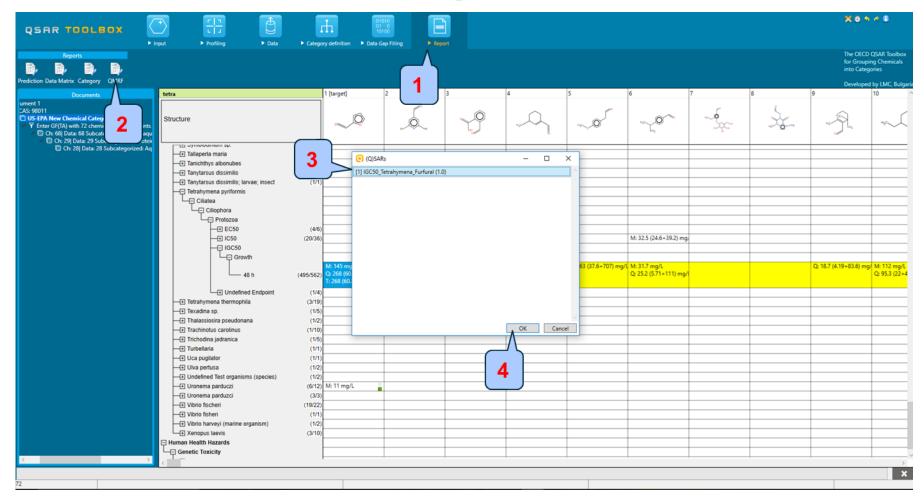
1. **Right click** on the row of endpoint tree associated with predictions from the QSAR model; 2. **Select** Export Data matrix (see next screen shot).

1. The nodes from the tree associated with QSAR predictions which will be exported are labelled with check marks; 2. **Click** Export; 3. **Browse** to **save** the folder on your PC; 4. **Give** a name of the file; 5. **Click** Save; 6. **Click** OK when the file is exported.

The resulting file in *.csv format can be opened via Microsoft Excel and further analysed.

[]] → ○ · ○ ·] → File Home Inse	ert Page Layo	out	Formulas	Data	Review	View						1.0	csv - Microso	oft Excel												-	 ∧ (?)
Cut	Calibri		~ A* .		=	• 📑 Wra	ap Text	General			E S		lormal	Bad		Good	Neu		Calcula	ition	+		Цар		7 A		
Paste	BIU		🔕 - <u>A</u>	· 53	通信	🚝 🔤 Mer	rge & Cente	r* \$* 9	% , .		ditional F natting ∗ as		heck Cell	Expla	natory	Input	Link	ed Cell	Note		Insert	Delete For	mat	S	ort & Find & ilter ≠ Select		
Clipboard 🕞		Font		G.	AI	gnment		G N	lumber	Es l	atting as				Style	25						Cells		Editir			
A1 .	e fa	CAS	Number																								
A B	C	D	F	E	G	н	1	1	V	1	М	N	0	р	0	P	c	т	Ш	V	W	X	v	7	AA	AB	AC
1 CAS NumiStructural	-		Title	Author	Effect		Endpoint	Reference	Test orga	r Datahasa				Class	Subclass	Order	Suborder	Family	Genus			~	Duration	~	n.{Duration		
2 98-01-1 O=Cc1ccc				Schultz,		Impairme					•	•	a Ciliophor				Tetrahym					Duration		Time	Durution	145.4256	
3 70201-42-: Brc1cc(C=		1557	retratox.	Schurtz,	. drowth	impairine	10050	TOXICOIOg	recranyn	in Aquatic O	TALSE	FIOLOZO	s emoprior	conacea	Mabuopi	nymenos	rectanyin	rectanyin	rectanyin	40				mile		140.4200	monye
4 119-67-5 OC(=O)c1																											
5 63282-01-(CC1CCCC																											
6 5703-26-4 COc1ccc(0																											
7 122-03-2 CC(C)c1cc		1997	Tetratoy:	Schultz -	Growth	Impairme	16C50	Toxicolog	Tetrahym	Aquatic O	FAISE	Protozo	a Ciliophor	Ciliates	Rhabdool	Hymenos	Tetrahym	Tetrahym	Tetrahym	48	h			Time		31.68359	mol/I
8 494-08-6 COc1cc(C						mpanne		. childridg	rectanyn		MEDE		, cinoprior	comatea	randoopi		readitytti	readityin		. 40						51.50555	
9 5614-52-8 CN1C(=O)																											
0 432-25-7 CC1CCCC		Jezezine	1120																								
1 97-96-1 CCC(CC)C		1997	Tetratox:	Schultz	. Growth	Impairme	16C50	Toxicolog	Tetrahyn	Aquatic O	FALSE	Protozo	a Ciliophor	Ciliatea	Rhabdon	Hymenos	Tetrahym	Tetrahym	Tetrahym	48	h			Time		112.3761	mol/i
2 112-44-7 CCCCCCC					Growth								a Ciliophor											Time		3.900997	
13 5362-56-1 CC(C)C=C		1000	retratox.	Serrarez,	. orowar	impunne	10050	TOXICOIOS	retranyn	Aquatico	TALSE	1101020	/ emoprior	cinatea	mubuopi	nymenos	readingin	readingin	readingin	0				THINS.		3.500557	monye
4 99506-67-1CC(O)C(C																											
L5 123-73-9 CC=CC=O		1997	Tetratox:	Schultz	Growth	Impairme	16C50	Toxicolog	Tetrahyn	Aquatic O	FALSE	Protozo	a Ciliophor	Ciliatea	Rhabdon	Hymenos	Tetrahym	Tetrahym	Tetrahym	48	h			Time		13.98432	mol/I
6 63034-44-(FC(CI)(CI)		1000	retration	oonarce,		impanne	10000	Texicolog	readingi	in iquatic o	171202		, emoprior	connaccu	masaspi	ingine ios	readingin	readingin								10100102	
7 1849-55-4 Oc1cccnc																											
8 Invalid CA O=CCC(=C		22222																									
9 2548-87-0 CCCCC=				Schultz.	Growth	Impairme	IGC50	Toxicolog	Tetrahym	Aquatic O	FALSE	Protozo	a Ciliophor	Ciliatea	Rhabdop	Hymenos	Tetrahym	Tetrahym	Tetrahym	48	h			Time		7.962124	mol/L
20 51575-61-(CC(C=O)=				,												.,											
1 624-67-9 O=CC#C																											
2 112-31-2 CCCCCCC	Ecotoxicol	1997	Tetratox:	Schultz.	Growth	Impairme	IGC50	Toxicolog	Tetrahyn	Aquatic O	FALSE	Protozo	a Ciliophor	Ciliatea	Rhabdop	Hymenos	Tetrahym	Tetrahym	Tetrahym	48	h			Time		8,200578	mol/I
23 41468-25- Cc1ncc(CC				,												.,											
4 488-11-9 OC(=O)C(,	-																								
25 533-49-3 OCC(O)C(
6 93943-58-1CC(CC1C(c1cc/c	(C)CC=1																								
7 Invalid CA Oc1ccc2cc																											
28 13289-18-(CC1OC(O		4CCC5	c)c(ccc5(0)C4CCC3	(0)C2)C2C	=CC(=O)OC=	=2)C(O)C(0	0)C10C10C	(co)c(o)	C(O)C1O																	
29 17422-74- O=CC1=C0						/	, ,-,-(
0 68282-53-: Cc1[nH]cr	Ecotoxicol	1997	Tetratox:	Schultz,	. Growth	Impairme	IGC50	Toxicology	Tetrahyn	Aquatic O	FALSE	Protozoa	a Ciliophor	ra Ciliatea	Rhabdop	Hymenos	Tetrahym	Tetrahym	Tetrahym	48	h			Time		937.2531	mol/L
1 613-45-6 COc1ccc(0						Impairme							a Ciliophor											Time		190.788	
2 930-60-9 CC(CI)C(=								-0	1.																		
3 1210-05-5 O=Cc1ccc		0																									
4 58402-14-(OC(=O)C(ccc1																								
5 128946-65 CCCCCC(0																											

Outlook


- Background
- Objectives
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data gap filling
- QSAR model
- Export QSAR prediction
- Report

QSAR TOOLEOX

Report

1. Go to "Report"; 2. Select QMRF; 3. Mark the user-defined QSAR model; 4. Click OK;

Report

Customize report content and	appearance		$ \Box$ \times	
Wizard pages	1			Generated report files - X The following files were generated. Select a file to open or save. QMRF report
Customize report		Automatically populated by the system	^	Training set
(Q)SAR	URL link to QMRF file QMRF authors and contact details			3
General information				
Endpoint				A PDF file containing QMRF report for the selected (Q)SAR
Algorithm	QMRF update(s)			
Domain	Qimite update(s)			Open Save as 4
Training set				e Generated report files − □ ×
Test set	Model developer(s) and contact details			The following files were generated. Select a file to open or save.
Mechanistic interpretation				QMRF report Training set
Miscellaneous				
Training set and test set data	Date of model development and/ or publication Reference(s) to main scientific			5 6
	Reference(s) to main scientific papers and/or software		2	MS Excel file containing the training set the QSAR along with their data for select parameters, profiles and endpoint tree ositions
			, v	Open Save as
		Back Next	Cancel Create report	

1. **Navigate** through the Wizard to customize the report; 2. **Select** Create report; 3. **Choose** QMRF report to create a PDF format of the report; 4. **Click** Save as; 5. Choose Training set in order to create a MS Excel file (training set of the QSAR along with their data); 6. **Click** Save as;

Report

QMRF Report

IGC50_Tetrahymena_Furfural

1/4

IGC50_Tetrahymena_Furfural

A (Q)SAR model

1. (Q)SAR identifier

- 1.1. (Q)SAR identifier (title): IGC50_Tetrahymena_Furfural (v.1.0)
- 1.2. Other related models: Not available
- 1.3. Software coding the model: QSAR Toolbox 4.1

2. General information

- 2.1. Date of QMRF: Not available
- 2.2. QMRF author(s) and contact details: Not available
- 2.3. QMRF update(s): Not available
- 2.4. Model developer(s) and contact details: Not available
- 2.5. Date of model development and/or publication: Not available
- 2.6. Reference(s) to main scientific papers and/or software package: Not available
- 2.7. Availability of information about the model: Not available
- 2.8. Availability of another QMRF for exactly the same model: Not available

3. Defining the endpoint (OECD Principle 1)

3.1. Species: Tetrahymena pyriformis

K	Page Layout For	mulas Da	raini Review View	ng	S	et		Tra	ining set.xlsx - Microso	ft Excel			
Cut Calit	ori ~ 11	· A A	=== >~	📑 Wrap Text	G	ieneral *		1	Normal E	Bad	(Good Net	
Paste B	<i>Ι</i> U - Η -	3 - A -		Merge & Cer	ter *		Conditiona		Check Cell E	xplanate	ory	input Link	
Clipboard	Font		Alignmen		6	Number 🖓	Formatting	 as Table * 			Style		
A1 - (*)	fx		, ngi mu	n		11011011 12					Julia	,	
A	B	с	DE	F	G	н	1	1	к	1	м	N	
1	0		Training set #1			ning set #2		Traini	ng set #3			ning set #4	
2 Substance identity					ITal						Tran		
3 4 CAS number						alid structure			structure	Invalid structure 613-45-6			
5 Chemical name			Ethylbutanal		U	ndecanal		De	canal	2,4-	DIMETHO	DXYBENZALDEHYD	
6 Other identifier													
7 SMILES			CCC(CC)C=O		cccc	0=22222222		cccco	O=22222		COc1ccc	(C=O)c(OC)c1	
8													
9 Parameters	unit												
10 11 Profilers													
11 Promers													
13 Training set data and use	r gathered data												
14 Training set data	- Barrier en data												
environment	endpoint		species, duration type, type of me assay, strain, t guideline, yea	thod, test value	unit T	species, duration, test type, type of method, assay, strain, test guideline, year,		ty	eccies, duration, test pe, type of method, assay, strain, test guideline, year,	value		species, duration, tes type, type of methoc assay, strain, test guideline, year,	
16 Aquatic Toxicity	IGC50	112 n	ng/L pyriformis	a 3,9	mg/L	Tetrahymena		mg/L	Tetrahymena pyriformis	191	mg/L	Tetrahymena pyriformis	

Congratulations

- You have used the Toolbox to build a user-defined QSAR model.
- You now know another useful tool in the Toolbox.
- Continue to practice with this and other tools. Soon you will be comfortable dealing with many situations where the Toolbox is useful.