QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Example for predicting acute aquatic toxicity to fish of mixture with known components

Outlook

- Background
- Objectives
- The exercise
- Workflow
- Save the prediction

Background

 This is a step-by-step presentation designed to take the user of the Toolbox through the workflow of prediction acute aquatic toxicity to fish of mixture with known components

Outlook

- Background
- Objectives
- The exercise
- Workflow
- Save the prediction

Objectives

- This presentation reviews a number of functionalities of the Toolbox:
 - The 2D editor for defining Mixture components
 - Filling data gaps by Similar mode approach

Outlook

- Background
- Objectives
- The exercise
- Workflow
- Save the prediction

Exercise

- In this exercise we will predict the aquatic toxicity to fish of mixture with defined components, which is the "target" chemical.
- Investigate the mode of action of components of the mixture
- Gather available experimental data for target chemical and its components
- Predict acute aquatic toxicity using Similar mode approach

Outlook

- Background
- Objectives
- The exercise
- Workflow
- Save the prediction

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Data
 - Category Definition
 - Filling Data Gaps
 - Report

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a mixture

User alternatives for defining mixtures with known compositions:

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing mixture constituents and defining their quantities
- Select from User List/Inventory/Databases
- Chemical IDs such as EC number, Einecs number
- Load file with mixture

Chemical Input Getting Started

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX".
- Click on "Input" (see next screen shot)

Chemical Input Input Screen

Chemical Input by Drawing

- Inputting the target chemical (mixture) by drawing its components within the "Composition" tool
- It is accomplished by a series of operations within the Composition" tool (see next screen shot).
- The subsequent series of screen shots will take you through the process of drawing constituents of mixture and defining their quantities.

Chemical Input Input target chemical by drawing

QSAR TOOLBOX		Ê				X 0 5 4 0
► II	Profiling	► Data ► Cate	gory definition 🕨 Data Gap Fillin	g 🕨 Report		
Document			Chemical List	Search	Target Endpoint	for Grouping Chemicals
					<u>()</u>	into Categories
New Open Close Save CAS#	Name struct re composition	Select Chemilds Data	ibase inventory List	Substructure (SMARTS) Query	Deline	Developed by LMC, Bulgaria
<u> Documents Document 1 </u>						
	1. Click	on Com	oosition			
						~
	·					×
for Crouning Chamicals into Catago	ricc		1.1.2.20	17		

16

Chemical Input Drawing the target mixture

Composition editor	-		<
Monoconstituent ~			
Monoconstituent	Identity		
Multiconstituent	CAS:		
Polymer	Name:		
UVCB	IUPAC:		
Other	Synonyms:	Edit	
	SMILES:	Edit	
	InChi:		
	100		
istituents (0) <u>Impuritie</u>	2	Add Remove	
	Composition editor	Imposition editor Monoconstituent Multiconstituent CAS: Name: UVCB UUPAC: Synonyms: SMILES: InChi: attuents (0) Important diffuses (0)	Imposition editor - - > Monoconstituent Identity - > Multiconstituent CAS: - - Polymer UUVC8 IUPAC: - - Other Synonyms: Edit Edit SMILES: InChi: Edit Edit stituents (0) Impuritier (0) Add Remove

- 1. From Drop down menu "Type" select Multiconstituent
- 2. If there is information for the mixture it could be fill in.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Chemical Input Drawing the target mixture

Composition editor		_		>
Type: Monoconstituent	~			
	ldentity			
	CAS:			
	Name:			_
	IUPAC:			_
	Synonyms:		Edi	it
	SMILES:		Edi	t
	InChi:			
				_
Constituents (1) Impuri	ties (0) Additives (0)			
			Add	
			Remov	ve
OH ₂	AS:			Ξ
	ame:			
	IPAC:	5.0		
3	nonyms:	Edit		
3		Ealt		
)
م 1	oncentration	1	2	
	- Typical concentration			J
	Y Family Mass Y Unit	~		
	- Concentration range			
	Construction of the second sec	~		
	ramiy: Mass V Onit:			
ne constitue	ents of the mixture click "Add"			

July, 201

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Chemical Input Drawing the target mixture

Composition editor		_		×
Type: Monoconstituent ~				
	entity —			
CA	NS:			
Na	ame:			
IUI	PAC:			
Syn	nonyms:		Edit	t
SM	AILES:		Edit	t
L InC	Chi:			
Constituents (1) Impurities (0)) Additives (0)			
			Add	
CAS			Remov	/e
OH ₂ Name:				
IUPAC:				
Synony	rms: Edit			
SMILES	Edit			
InChi:				
1 Concen	tration	1		
			J	
	v Family: Mass v Unit: v			
Conc	centration range			
	v V Family: Mass V Unit: V			
1. Click "Edit" on row	SMILES to define the structure of the f	irst		
constituent			Cano	:el

July, 2017

19

1.

The OLCD QSAR

roolbox for Grouping Chemicals into Categories

Chemical Input Drawing the target mixture

1.

2.

The OECD

Chemical Input

Drawing the component of mixture "Diphenylmethanone" by 2D editor

Chemical Input

Drawing the component of mixture "Diphenylmethanone" by 2D editor

1.

1.

Chemical Input

Drawing the component of mixture "Diphenylmethanone" by 2D editor

Chemical Input

Drawing the component of mixture "Diphenylmethanone" by 2D editor

2D Editor		– 🗆 X
\odot		
Smiles V C1=CC=C(C=C1)C(C1=CC=CC=C1)=C		X
Rectangle V Make first C V	Object explore	er X
	Atom: C	
	Element: Charge: Hybridization:	C ~ C N O
S	Valent state: Isotope:	S F
F	Implicit hydrogens:	Br
Р	Atom number:	6
	Aromatic:	False
	Parity:	None
	Radical:	undefined Y
To change the carbon atom chose "Selection tool		Cancel

- 2. Set the focus on the carbon atom by left mouse click
- 3. Chose the atom from the dropdown menu

1.

Chemical Input

Drawing the component of mixture "Diphenylmethanone" by 2D editor

Chemical Input Input quantities of mixture

- Quantities of the constituents should be added manually
- There are several ways to add mixture quantity:
 - Mass fraction
 - Mass
 - Amount of substance
 - Molality
 - Mole fraction
 - Mass concentration
 - Molar concentration
- Select "Mass fraction %" then "Weight %"

Chemical Input Input quantities of mixture

Type: Monoconstitu	Jent ≚
	Cldentity
	CAS:
	Name:
	IUPAC:
	Synonyms:
	SMILES:
	InChi:
Constituents (1)	mpurities (0) Additives (0)
	Add
	Remov
0,0	Namer
	IUPAC:
	Synonyms:
	SMILES: O=C(c1ccccc1)c1ccccc1 Edit
	InChi:
1	Constation
2	= v 9 Family Mass fraction v Unit: weight % v
	Concentration range
	v v Family: Mass fraction v Unit: v

1. 2.

1. 2. 3.

Synonyms:

Chemical Input

Drawing the component of mixture "1-(2,3,4trichlorophenyl)ethan-1-one" by 2D editor

Type: Monoconstitue	Identity CAS: Name: IUPAC: Synonyms: SMILES: InChi: Inchi	Edit
Constituents (2) Im	purities (0) Additives (0)	
0H2 1	Identity CAS: Name: IUPAC: Synonyms: SMILES: O InChi: Concentration	Remove
	Concentration range	
add the n e info pan	ext constituent click again "Add" el for new constituent appear.	

Edit

Chemical Input

Drawing the component of mixture "1-(2,3,4trichlorophenyl)ethan-1-one" by 2D editor

2D Editor		– 🗆 X
\odot		
Smiles V C1=CC(=C(C(=C1C(C)=O)CI)CI)CI		X
Rectangle V Make first C V	Object expl	orer X
	Atom: Cl	
	Element:	CI
	Charge:	0 ~
N	Hybridization:	undefined \vee
0	Valent state:	v4 ~
H ₃ C O	Isotone	0
		2
	implicit nyarogens:	5
P	Atom number:	6
CI	Aromatic:	False
Dr	Parity:	None 🗸
By using drawing tools define the	structure of	1-(234-
trichlorophenyl)ethan-1-one		1 (2,3,7
chemorophenyrjethan i one		cel

Chemical Input

Drawing the component of mixture "1-(2,3,4trichlorophenyl)ethan-1-one" by 2D editor

	CAS:	
	Name:	
	IUPAC:	
	Synonyms:	Edit
	SMILES:	Edit
	InChi:	
Constituents (2)	Impurities (0) Additives (0)	
	c Identity	Add
ôć.	CAS:	Remove
	Name:	
ONE CO	IUPAC:	
	Synonyms:	
	SMILES: CC(=O)c1ccc(CI)c(CI)c1CI Edit	
	InChi:	
1	- Concentration	
	Teriol constanting	
		21
2 ∟	= v 1 Family Mass fraction v Unit: weight % v	
	Family: Mass fraction Unit:	

2.

1. 2. 3.

Synonyms:

Chemical Input

Drawing the component of mixture "Butan-1-ol" by 2D editor

Type: Monoconstituent	Identity CAS: Name: IUPAC: Synonyms: SMILES: InChi: Inchi	Edit Edit
Constituents (2) Impu	rities (0) Additives (0)	
OH ₂	Identity CAS:	Remove
1	SMILES: O InChi: Concentration	
	Typical concentration Family: Mass fraction Vunit: Vunit	2
	× Family: Mass fraction × Unit: ×	
add the ne	xt constituent click again "Add"	
info nano	l for now constituent annear	

Edit

Chemical Input

Drawing the component of mixture "Butan-1-ol" by 2D editor

🕘 2D Editor		- □ >
Snap Lines Y	Object	explorer :
	Atom: O	
C H ₃ C OH	Element: Charge:	0 ~ 0 ~
0	Hybridization: Valent state:	v4 ~
S	Isotope:	0
F	Implicit hydrogens:	3
P	Atom number:	б
	Aromatic:	False
	Parity:	None
Br	, Radical:	undefined Y
By using drawing tools define the struct	ure of Butan-	1-ol

Chemical Input

Drawing the component of mixture "Butan-1-ol" by 2D editor

ype: Monoconstitue	cldentity
	Name
	Synonyms:
Constituents (3) Im	purities (0) Additives (0)
	μα. ()
	Cldentity
H ₃ C ₂ OH	CAS:
	Name:
	IUPAC:
	Synonyms: Edit
	SMILES: CCCCO Edit
	InChi:
1	_ Concentration
	= v 90 Family: Mass fraction v Unit: weight %
	Concentration range
	v Family: Mass fraction v Unit: v

1. 2.

Chemical Input Drawing the target mixture

Type: Monoconstituent Identity CAS: Name: IUPAC: Synonyms: Edit SMILES: InChi: Constituents (3) Impurities (0) Identity Add Remove Remove IUPAC: Synonyms: SMILES: Edit InChi: Edit IUPAC: Synonyms: Synonyms: Edit
Identity Identity CAS: Identity IUPAC: IUPAC: Synonyms: Edit SMILES: InChi: Inchi: Inchi: Constituents (3) Impurities (0) Identity Add Remove Identity IUPAC: Identity
CAS:
Name:
IUPAC:
Synonyms: Edit SMILES: Edit InChi: Edit Constituents (3) Impurities (0) Identity Add CAS: Add Name: IUPAC: Synonyms: Edit Synonyms: Edit
SMILES: Edit InChi: Edit Constituents (3) Impurities (0) Identity Add CAS: Remove Name: IUPAC: Synonyms: Edit Synonyms: Edit
InChi:
Constituents (3) Impurities (0) Additives (0) Identity CAS: Name: IUPAC: Synonyms: Edit Edit Edit Edit
HgC Identity Add CAS: Remove Name: IUPAC: Synonyms: Edit SMILES: CCCCO
HgC CAS: Remove Name: IUPAC: Synonyms: Edit Synonyms: Edit Edit
HgC CAS: Cas: Name: IUPAC: IUPAC: Synonyms: Edit SMILES: CCCCO
IUPAC: Synonyms: Edit
Synonyms: Edit
SMILES CCCCO
Concentration —
Typical concentration —
= v 90 Family: Mass fraction v Unit: weight % v
Concentration range
Envilue Marc fraction v Unit
1. Confirm the mixture constituents by click Ok
Cldentity
CAS:
Name:
ок 🧹 📕

Chemical Input Target chemical identity

Chemical Input Target chemical identity

- Note that no CAS number or name is displayed for this chemical. This means the target chemical is not listed in the chemical inventories/databases implemented in the Toolbox(see next slide).
- See next slide how to visualize separately the mixture components for further analysis.
Chemical Input Target chemical identity

	QSAR TOOLBOX		K	+ Input	L Pro	Difiling		Data I	Category	definition	010 01 101 • Data Ga	ap Filling		
		Docu	ment			Single Chemical					Chemical List			
	new	ј Ореп	X Close	H Save	# CAS#	TT Name	Structure Co	j omposition	Contract Select	ChemIDs	Databas	se Inventory	List	↓ Substruct
	_		Document	ts		Filter	endpoint tree				1	[target]		
1		Substa	Expor Print Renar	t ne	Þ	Strue	cture					~~~ 0 ₁ 0	₹ ₹	
			Delet Delet	e e All Lists e All But Thi	5	+ Str + Par + Phy	ucture info rameters ysical Chemic	al Propertie	S					
		2	Multi	plication	,	Me Tau Tar	tabolism/Trans tomerism get multiplicati	ion	•	3				

- 1. Select "Substance"
- 2. By right mouse click select "Multiplication/Target multiplication"

Chemical Input Target chemical identity

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Side-Bar to Profiling

Summary information of the different profilers are provided in the "About".

Highlight the profiler
 Select About
 Click Close

Profiling Side-Bar to Profiling

 For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, Acute aquatic toxicity MOA by OASIS and clicking on "View" button(see next screen shot).

Profiling Side-Bar to Profiling for Aqute aquatic toxicity MOA

- 1. Highlight the profiler
- 2. Right mouse click and select "View scheme"
- 3. Click on one of the nodes
- **4**. Boundaries defined the rules

- Select the "Profiling methods" related to the target endpoint by clicking on the box next to the profilers name.
- This selects (a green check mark appears) or deselects(green check disappears) profilers.
- For this example, the following primary profilers relevant to the aquatic toxicity are selected(see next screenshot):
 - US-EPA New Chemical Categories
 - Aquatic toxicity classification by ECOSAR structural grouping
 - Acute aquatic toxicity MOA by OASIS mechanistic grouping
 - Acute aquatic toxicity classification by Verhaar (Modified) grouping by reactivity
 - Protein binding by OASIS
 - Protein binding by OECD

The OECD QSAR Toolbox for Grouping Chemicals into Categories

		01010 01 0 10100 • Data Gap Filling	► Report		X 8 5 7 8
Profile					The OECD QSAR Toolbox for Grouping Chemicals into Categories
Apply New New Delete		Parent chemical	Constituent #1	Caractituset #2	Developed by LMC, Bulgaria
Documents Profiling methods Options f Select All Unselect All Invert About Vonization at pH = 9	Structure		H ₃ C OH		O O
 Pitein binding by OASIS Potein binding by OECD Protein binding potency (Vs (DPRA 13%)) Protein binding potency Lys (DPRA 13%) Toxic hazard classification by Cramer Toxic hazard classification by Cramer (extended) Sensyoint Specific 	 € Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards 				
A ute aquatic toxicity classification by Verhaar (Modifie A ute aquatic toxicity MOA by OASIS A quatic toxicity classification by ECOSAR diaccumulation - metabolism alerts Bioaccumulation - metabolism half-lves Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox) alerts by IS DART scheme					
Metabolism/Transformations Options f Select All Unselect All Invert Observed Mammalian metabolism Observed Mammalian metabolism Observed Mammalian metabolism Observed Rat In vivo metabolism Observed Rat Liver S9 metabolism Observed Rat Liver S9 metabolism Observed Rat Liver S9 metabolism Autoxidation simulator Autoxidation simulator Autoxidation simulator Hydrolysis simulator (alkaline medium) Dissociation simulator Hydrolysis simulator (alkaline medium) Dissociation simulator Hydrolysis simulator (alkaline medium)					

Place a green check in the box before profilers related to the target endpoint.
 Click Apply

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target chemical.
- Please note the specific profiling results by Classification by ECOSAR; MOA by OASIS; US-EPA; Protein binding by OECD(see next slide).
- The results of profiling shows same mode of action for the three components of the mixture

	F Pi	rofiling	► Data	Category definition	01010 01 0 10100 Data Gap Filling	► Report		K 0 5 4 0	
1 ofiling Custom profile							T fi ii	he OECD QSAR Toolbox or Grouping Chemicals nto Categories	
Apply View New Delete					Parent Chemical			eveloped by LMC, Bulgari	
Ocuments	Fil	ter endpoint	tree		facent chemical	Constituent #1	Constituent #2	Constituent #3	
Profiling methods Options	s	tructure			~~~ ~ x ¢	H ₃ C OH			
f Select All Unselect All Invert About Ionization at pH = 9					٥٫٥				
Protein binding by OASIS Protein binding by OECD	÷	Structure info	0						
Protein binding potency	÷	Parameters							
Protein binding potency Cys (DPRA 13%)	÷	Physical Che	mical Properties						
Protein binding potency Lys (DPRA 13%)	÷	Environment	al Fate and Trans	port					
Toxic hazard classification by Cramer Toxic hazard classification by Cramer (extended)	+	Ecotoxicolog Human Healt	jical Information h Hazards	Visualiza	tion the no	des of the	e tree		
Acute aquatic toxicity classification by Verhaar (Mo	difie 📃	Profile	l						
Acute aquatic toxicity MOA by OASIS		- Predefine	d						
Aquatic toxicity classification by ECOSAR Right Computing - metabolism alorts		US-EF	A New Chemical	Categories	Neutral Organics	Neutral Organics	Neutral Organics		
Bioaccumulation - metabolism half-lives		- 🗐 General N	Nechanistic						
Biodegradation fragments (BioWIN MITI)		Protei	n binding by OAS	SIS	No alert found	No alert found	Schiff base formation	No alert found	
Carcinogenicity (genotox and nongenotox) alerts	by IS	Protei	n binding by OEC	D	No alert found	No alert found No alert found		No alert found	
C DART Scheme		– 🗐 Endpoint	Specific						
		Acute	aquatic toxicity of	classification by Verha	Class 1 (narcosis or t	Class 1 (narcosis or bas	Class 3 (unspecific read	t Class 5 (Not possible to	
Metabolism/Transformations		- Acute	aquatic toxicity	MOA by OASIS	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	
Options 🖌		- Aquat	ic toxicity classif	ication by ECOSAR	Neutral Organics	Neutral Organics	Neutral Organics	Neutral Organics	
f Select All Unselect All Invert									
Documented Observed Mammalian metabolism Observed Minister anterbalism	^			Compor	nents of the	mixture hav	ve		
				same r	node of activ	on accordin	a		

to ECOSAR; US-EPA; MOA and Protein binding by OECD profilers

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

Data

- "Data" refer to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox database.
- Data gathering can be executed in a global fashion (i.e., collecting all data of all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).
- In this example, we limit our data gathering to the common aquatic toxicity endpoints from four aquatic databases containing aquatic toxicity data – Aquatic ECETOC; Aquatic Japan MoE; Aquatic OASIS; ECOTOX.

Data

		► Profiling ► Data ► Category definition ►			01010 01 0 10100 ► Data Gap Fil	ling	► Report	3	< o h / 0
Data 3 mport Export Gather Import IUCUD6 IUCUD6								T fu ir	he OECD QSAR Toolbox or Grouping Chemicals ito Categories
Documents		Filter endpoint	tree		Parent cher	nicai	Constituent #1	Constituent #2	eveloped by LMC, Bulgaria Constituent #3
Documents Documents Databases Options f Select All Unselect All Invert Physical Chemical Properties	1	Structure			•~~~ ••	رې د	Н ₃ СОН		0 0
Construction Process Construction Construction Aquatic Extension Aquatic Japan MoE Aquatic OASIS ECHA CHEM	•	+ Structure inf + Parameters + Physical Ch + Environmen	fo emical Properties tal Fate and Transpo	rt		·			
✓ ECOTOX → ✓ Human Health Haza		Ecological mornauon Human Health Hazards Profile							
		US-E	PA New Chemical Ca Mechanistic	ategories	Neutral Or	ganics	Neutral Organics	Neutral Organics	Neutral Organics
		Prote	in binding by OASIS	;	No alert fo	und	No alert found	Schiff base formation	No alert found
		Prote	in binding by OECD		No alert fo	und	No alert found	No alert found	No alert found
			t Specific						
		- Acute	e aquatic toxicity cla	ssification by Verha	Class 1 (na	rcosis or t	Class 1 (narcosis or base	Class 3 (unspecific read	t Class 5 (Not possible to
Ontions 4		- Acute	e aquatic toxicity MO	A by OASIS	Basesurfac	e narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics
f Select All Unselect All Invert		- Aqua	tic toxicity classifica	ation by ECOSAR	Neutral Or	ganics	Neutral Organics	Neutral Organics	Neutral Organics

1. **Expand** the Ecotoxicological Information

2. **Select** databases related to the target endpoint by adding a green check in the box before the database name.

3. Click Gather

Data Process of collecting data

Toxicity information on the target chemical is electronically collected from the selected datasets.

A window with "Read data?" appears. Now the user could choose to collect "all" or "endpoint specific" data

QSAR TOOLBOX	Input Input	Data	Category definition	01010 01 0 10100 ► Data Gap Filli	ing	► Report		X 0 5 0 0
Data Import Export							ſ	The OECD QSAR Toolbox or Grouping Chemicals nto Categories
Gather Import IUCLID6 IUCLID6				Facebul Den	W di		1	Developed by LMC, Bulgaria
Comments Documents	Filter er	dpoint tree		141		Constituent #1	Constituent #2	Constituent #3
Databases	Otruct	IFA			ूष्ट			
f Select All Unselect All Invert]			٥٫٥		- m3c OH		
 Invision Chemical Properties Invision Environmental Fate and Transport Ecotoxicological Information 	⊕ Struc	ture info						
Aquatic ECETOC Aquatic Japan MoE Aquatic DASIS	+ Para + Phys	ical 💽 Read data?					×	
CHA CHEM CHA CHEM ✓ ECOTOX → ≪ Human Health Hazards		n H	Choose	from Tau	tomers			
		e rede - U				OK Cano	el al Organics	Neutral Organics
	——————————————————————————————————————	eneral Mechanistic						
		- Protein binding by OASI	s	No alert fou	und	No aler	Schiff base formation	No alert found
		- Protein binding by OECD)	No alert fou	und	No aler	No alert found	No alert found
	μ	ndpoint Specific						
		 Acute aquatic toxicity cla 	assification by Verha	Class 1 (nar	rcosis or t	Class 1	si Class 3 (unspecific rea	t Class 5 (Not possible to
Ontions 4		 Acute aquatic toxicity M0 	DA by OASIS	Basesurface	e narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics
f Select All Unselect All Invert Control Control		- Aquatic toxicity classific	ation by ECOSAR	I Neutral Org	ganics	Neutral Organics		

1. Click OK to read all available aquatic tox data

Data Process of collecting data

Target endpoint: LC50; P.promelas; 96h

QSAR TOOLEOX	Profiling Posta Category definition	01010 01 0 10100 n ► Data Gap Filling	► Report		X 0 5 4 0
Data Import Export					The OECD QSAR Toolbox for Grouping Chemicals into Categories
		Parent chemical	Constituent #1	Constituent #2	Developed by LMC, Bulgaria
Documents Databases Options f Select All Unselect All Invert	Structure	۲۰۰۰۰۰۰۰ ۲۰۰۰۰۰۰ برفت ۵٫۵	H ₃ C OH		
 Physical Chemical Properties Chemical Fate and Transport Ecotoxicological Information 	Ecotoxicological Information	vsw			
Aquatic ECETOC Aquatic Japan MoE Aquatic OASIS	Accumulation	(1/2)	M: 25÷45 mg/L M: 185÷1.48E+03 mg/		
ECHA CHEM	- E Behavior	(3/8)	M: 1.41E+03 mg/L	M: 2 mg/L	M: 13.7 mg/L
ECOTOX	Biochemistry	(1/2)			M: 1 mg/L
	Development	(2/7)	M: 823 mg/L		M: 1.78 mg/L
		(2/27)	M: >1E+03 mg/L		M: 0.46 mg/L
	Growth Inhibition	(2/4)	M: >1E+03 mg/L		M: 1 mg/L
	→ Immobilisation	(2/2)	M: >1E+03 mg/L		M: >10 mg/L
	Intoxication	(2/8)	M: 1.86E+03 mg/L		M: 0.28 (0.21÷0.37) mg
	Mortality				
		(3/5)	M: 1.73E+03 mg/L	M: 2 mg/L	M: 15.3 mg/L
		(1/2)	M: 1.17E+03 mg/L		
Inventories	LC100	(1/2)	M: 1.22E+03 mg/L	· · · · · · · · · · · · · · · · · · ·	
Options					
f Select All Unselect All Invert	1 -⊕1 h	(1/2)	M: 1.94E+03 mg/L	L	
Canada DSL		(1/1)	M: 0.45 % v/v		
DSSTOX	-+± 24 h	(2/13)	M: > 1E+03 mg/L		IVI: 14.8 mg/L
ECHA PR		(2/13)	IVI: > IE+U3 mg/L		IVI: 14.5 mg/L
EINECS		(2/3)	W: 1.94E+05 mg/L	L	IVI: 5 mg/L
METI Japan					
NICNAS	Anthranada (anthranada)	(1/1)	M: 661 mg/l		
REACH ECB		(0.1)	ini oor ing/c	-	
TSCA	Actinontervaji (rav-finned fis	10			
		(1/2)	M: 2.25E+03+2.4E+(
	Lepomis macrochirus	(1/1)	M: 100 (100+500) ma/	1	
	Leuciscus idus	(1/1)	M: 1E+03 mg/L	-	
	Ongiae latioss	(2/2)	Wi: > 100 mg/L		Mt > 10 mg/l
	Pimephales prometas	(3/11)	M: 1.73E+03 (1.63E+	M: 1.99 ma/L	M: 10.9 (9.64÷12.3) r

10 experimental data for the investigated endpoint: LC 50;96h; *P.promelas* have been found for the components of the mixture

Recap

- You have entered the chemical mixture with defined components
- The results of profiling shows same mode of action for the three components of the mixture
- You have gather available experimental data for the target chemical mixture and found no experimental data for mixture. However experimental data for the components has been found
- You are ready to predict Acute aquatic toxicity to fish of mixture: Endpoint: LC50, Duration:96h; Effect: mortality; species: *Pimephales promelas*
- Now you are ready to continue with next step of the workflow "Data Gap Filling".

Outlook

- Background
- Objectives
- The exercise

Workflow

- Input
- Profiling
- Data

• Data Gap filling

Data Gap Filling Overview

- "Data Gap Filling" module give access to two different data gap filling tools:
 - Independent MOA- all components are with different mode of action
 - Similar MOA- all components are with similar mode of action
- More details about different MOA is given on next six slides #56-61
- In this particular case all components of the current mixture are with similar mode of action. In this respect Similar MOA is applied

Data Gap Filling Independent MOA

Assumption – combined effect can be calculated from the effects caused by the individual mixture components by following the statistical concept of independent random events

Mixture response: $E(\mathbf{0})$

$$C_{Mix}$$
) = 1 - $\prod_{i=1}^{N} [1 - E(C_i)]$

3.7

 $E(C_{Mix})$ - the effect provoked by the total mixture

 $E(C_i)$ - the effects that the individual components would cause if applied singly at that concentration at which they are present in the mixture

Problem - dose-response relationships are practically unknown

Data Gap Filling Similar MOA

Assumption – components in a mixture contribute to the joint effect, in proportion to their prevalence and individual potency

- Components act at the same target site
- Components act by the same mechanism
- Components have similar effect (rather than mechanism)

Method for calculation toxic effect of mixture with components acting by same mechanisms is given on next slide

Data Gap Filling Similar MOA

Relative potency factor $RPF_{j}^{(i)} = \frac{ED_{resp}^{(i)}}{ED^{(j)}}$

i – index (reference) chemical

 ED_{resp} – dose (concentration) of a chemical that cause a specified response (fraction of animals that respond, fractional change in a measured physiological value, etc.)

Chemical Equivalent Dose (Concentration)

$$CED_j^{(i)} = RPF_j^{(i)}d_j$$

Dose (concentration) of the reference chemical *i* that will cause the same effect as chemical *j* at dose (concentration) d_i

Index Chemical Equivalent Dose (Concentration)

$$VCED = \sum_{j=1}^{J} CED_{j}^{(i)} = \sum_{j=1}^{J} RPF_{j}^{(i)}d_{j}$$

Equivalent dose (concentration) of the reference chemical *i* that will cause the same effect as the mixture

Data Gap Filling Similar MOA

Toxic effect of mixture - response (fraction of animals that respond, fractional change in a measured physiological value, etc.) as a result of exposure to mixture

 $Effect^{Mixture} = f_i(ICED)$

 f_i - dose-response function of the index chemical

Illustration of calculating effect of mixture is given on next two slides

Data Gap Filling Similar MOA (Illustration)

Reference chemical: Component 1 (*i* = 1)

Data Gap Filling Similar MOA (Illustration)

Reference chemical: Component 1 (i = 1)

Data Gap Filling Case study

- In this particular case all components of the current mixture are with similar mode of action. In this respect Similar MOA is applied
- Application of Similar MOA for our case study is illustrated on next slides

Data Gap Filling Apply Similar MOA

OSAR TOOLBOX	$\langle \uparrow \rangle$			Н		01010 01 0 10100				X 0 5 C 0
	▶ Input	Profiling		ata Category def	finition	Data Gan Fil		Report		
Gap Filing 2						John Sup I -				The OECD QSAR Toolbox for Grouping Chemicals into Categories
Independent MOA Similar MOA										Developed by LMC, Bulgaria
 Do typents 		Filter end	point tree			raient chei (*******	i iicai	Constituent #1	Constituent #2	Constituent #3
 Data Gap Filling Stting 	s	Structure				~~~~	ूष्ट		<u> </u>	
 ✓ Only endpoint relevant ✓ Only chemical relevant 		Structur	e			್ಧಂ		Нас ОН		
At this position:			Growth		(2/27)			M: >1E+03 mg//		M: 0.46 mg/l
Select a cell with a rigid (hold) path			Growth Inhibition		(2/27)			M: >1E+03 mg/L		M: 0.40 mg/L
Automated workflows			Immobilisation		(2/4)			M: >1E+03 mg/L	L	M: >10 mg/l
Standartized workflows			Intoxication		(2/2)			M: 1.86F+03 mg/L		M: 0.28 (0.21±0.37) mc
			Mortality		(2/0)			inii nooz i oo nig/ z		ini oleo (ole i olo i y nig
		NIL	-FT EC50		(3/5)			M: 1.73E+03 ma/L	M: 2 mg/L	M: 15.3 mg/L
			-FT LC0		(1/2)			M: 1.17E+03 mg/L	-	
			- LC100		(1/2)			M: 1.22E+03 mg/L		
			LC50							
			-1 h		(1/2)			M: 1.94E+03 mg/L		
					(1/1)			M: 0.45 % v/v		
			- 🕂 24 h		(2/13)			M: >1E+03 mg/L		M: 14.8 mg/L
			- 🕀 48 h		(2/13)			M: >1E+03 mg/L		M: 14.5 mg/L
			- 🕂 72 h		(2/3)			M: 1.94E+03 mg/L		M: 5 mg/L
			Anim	alia (animals)						
			- 🕂 A	rthropoda (anthropods)	(1/1)			M: 661 mg/L		
			-pc	hordata (chordates)						
			48	Actinopterygii (ray finne	d fishe		-	<u> </u>		
				Alburnus alburnus	(1/2)		_	25E+03÷2.4E+(
				 Lepomis macrochiru 	JS (1/1)		_/ 1	00 (100÷500) mg/	4	
				Leuciscus idus	(1/1)			E+03 mg/L		
				 Oryzias latipes 	(22)		$\prime >$	100 mg/L		M: >10 mg/L
				 Pimephales promela 	as ((3/11)			M: 73E+03 (1.63E+	M: 1.99 mg/L	M: 10.9 (9.64÷12.3) r
				Poecilia reticulata	(2/2)			M: 1.74E+03 mg/L		M: 15.5 mg/L
			+ Unde	fined Kingdom	(2/3)			M: 2.1E+03 (1.9E+03		M: 5 mg/L

1. Highlight the data endpoint box corresponding to *Pimephales promelas*/LC50/96h under the target chemical. 2. **Select** Similar MOA

Data Gap Filling Apply Similar MOA

	(+)		A		01010			X 🛛 א א 🖉 🗊
QSHR IDDLEDX				Colonomi definition	10100	N Demost		
Gap Filling	r input	Proming	P Data	 Category definition 	 Data Gap Filling 	r Report		The OECD QSAR Toolbox for Grouping Chemicals into Categories
Documents		Filter endpoint	tree		Parent chemical	Constituent #1	Constituent #2	Constituent #3
Data Gap Filling Settings Only endpoint relevant Only endpoint relevant		Structure		0_0				
At this position:	🦲 Possible	data incon	1	M: 0.46 mg/L				
Select a cell with a rigid (bold) path Automated workflows Standartized workflows	✓ Native s	scale/unit			M: 1 mg/L M: >10 mg/L M: 0.28 (0.21÷0.37) mg			
		ol/L (3 data g/L (6 data;	M: 2 mg/L	M: 15.3 mg/L				
	Gap filling log(1/r	scale/unit - nol/L)						
	Oµg/L Omg/l		2 2	M: 14.8 mg/L M: 14.5 mg/L				
	Data 11/11;	; Chemicals	3/3			M: 5 mg/L		
					OK	Cancel	1	
				apomis macrochirus auciscus idus ryzias latipes imephales promelas pecilia reticulata pecilia reticulata	(1/1) (1/1) (2/2) (3/11) (2/2) (2/2)	M: 100 (100+500) mg M: 1E+03 mg/L M: >100 mg/L M: 1.73E+03 (1.63E+ M: 1.74E+03 mg/L	M: 1.99 mg/L	M: >10 mg/L M: 10.9 (9.64+12.3) r M: 15.5 mg/L

The user will be informed If there is different experimental data. Click Ok.

Data Gap Filling Results of Similar MOA

QSAR TOOLEOX	▶ Profiling ▶ Data ▶ Category definition ▶ Data Gap Filling ▶ Report	X 0 5 0 0
Gap Filling Workflow Find analysis Read across (Q)SAR Standardized Automated		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC. Bulgaria
Documents	Filter endpoint tree 1 [target] 2 3	4
Document 1 Substance		0,0
Y Enter GF(SimilarMOA) with 4 chemicals, 11 data points	Pimephales prometas (3/11) M: 1.73E+03 (1.63E+ M: 1.99 mg/L	M: 10.9 (9.64÷12.3) r
Finter GF(SimilarMOA) with 4 chemicals, 11 data points Finter GF(SimilarMOA) with 4 chemicals, 11 data points	Poecilia reticulata (2/2) M: 1./4E+03 mg/L	M: 15.5 mg/L
T Enter of Chillian monty with 4 chemicals, 11 data points		M: 5 mg/L
	→ 7 d (1/1)	M: 6.65 (5.96÷7.41) mg
	LC50/ (1/1) M: 2.95E+03 mg/L	
	- ELDEC (1/3)	M: 6.33 mg/L
		M: 4.58 mg/L
	HRC50 (1/1) M: 9.33E+03 mg/L	
	+ NOEC (2/5) M: 46 mg/L	M: 3.31 mg/L
	+ NR-LETH (1/1) M: 1.4E+03 ppm	_
< >>		
Data Gap Filling Settings		>
 ✓ Only endpoint relevant ✓ Only chemical relevant 	Descriptors Dose/concentration addition for LC50, based on 3 values Predicted: 83.1 mg/L	Select / filter data
At this position:	Prediction	Descriptors / data
Select a cell with a rigid (bold) path Automated workflows 1		Calculation options
Standartized workflows 1		Visual options
		Information
	1 . Predicted result is 83.1 mg/l	Miscellaneous
	2 1 1.5 2 2.5 3 3.5 log Kow	
	Active descriptor X log Kow v	Accept prediction
4		×

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Results

- The components of the mixture have same mode of action.
- By accepting the prediction the data gap is filled (see next screen shot).

Data Gap Filling

Accept prediction results

QSAR TOOLEOX	Profiling > Data > Category definition > Data Gap Filling > Report	X 0 5 4 0
Gap Filling Workflow		The OECD QSAR Toolbox for Grouping Chemicals into Categories
Documents	Filter endpoint tree 1 [target] 2 3	4
, Document 1 ● ③ Substance ▲ 圖 Composition list ④ Constituent #1 ④ Constituent #3	Structure	0_0
 ▼ Enter GF(SimilarMOA) with 4 chemicals, 11 data points ▼ Enter GF(SimilarMOA) with 4 chemicals, 11 data points ▼ Enter GF(SimilarMOA) with 4 chemicals, 11 data points 	Pimephales promelas (3/11) M: 1.73E+03 (1.63E+1 M: 1.99 mg/L Poecilia reticulata (2/2) M: 1.74E+03 mg/L M: 1.74E+03 mg/L Undefined Kingdom (2/3) M: 2.1E+03 (1.9E+03 M: 1.74E+03 mg/L Image: T d (1/1) M: 85 mg/L M: 1.74E+03 mg/L	M: 10.9 (9.64+12.3) r M: 15.5 mg/L M: 5 mg/L M: 6.65 (5.96+7.41) mg
	Image: Construction Image: Construction Image: Construle Image: Constructin	M: 6.33 mg/L M: 4.58 mg/L M: 3.31 mg/L
C Data Gap Filling Settings	→ INR-LETH M: 1.4E+03 ppm → INR-ZERO Yes ✓ 2	v
 ✓ Only endpoint relevant ✓ Only chemical relevant 	Descriptors Dose/concentration a C50, based on 3 values Predicted: 83.1 mg/L	Select / filter data
At this position: Select a cell with a rigid (bold) path Automated workflows 1 Standartized workflows 1	Prediction	Descriptors / data Calculation options Visual options
Click Accept prediction	2. Click OK	Miscellaneous
	2 1 1 1.5 2 1.5 2 2.5 3 3.5 log Kow Active descriptor X log Kow	Accept prediction
		×

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Predicted value for LC50

QSAR	TOOLBOX	F Input	□ □ ■ Profiling		Data	1 definition	01010 01 0 10100 Data Gap Fil	ling	► Report		X 0 1 1 1 1	
Gap Fi	Iling										The OECD QSAR Tool for Grouping Chemica into Categories	box als
			Cite of a				Parent cher	TIICdi	Caratily and #1	Constituent #2	Developed by LMC, B	ulgaria
<u>^</u>	Documents		Filter en	idpoint tree			F11		Constituent #1	Constituent #2	Constituent #3	
Locument 1 Substance Composition list Constituent #1 Constituent #2				Structure .				₹¶ C	H ₃ C OH		0_0	
8	Constituent #3	homicals 11 data point		- E LOV		(114)			M. 1.172.05 mg/c	1		_
, Y	Enter GF(SimilarMOA) with 4 c	hemicals, 11 data point:				(1/2)			M: 1.22E+03 mg/L			_
Ÿ	Enter GF(SimilarMOA) with 4 c	hemicals, 11 data point				(1/2)			M: 1.94E+03 mg/L			-
				- ⊕ 4 h		(1/1)			M: 0.45 % v/v			
				- ∓ 24 h		(2/13)			M: >1E+03 mg/L		M: 14.8 mg/L	1
				+++ 48 h		(2/13)			M: >1E+03 mg/L		M: 14.5 mg/L	
						(2/3)			M: 1.94E+03 mg/L		M: 5 mg/L	- 11
				Ani	malia (animals)							
				⊢⊕	Arthropoda (arthropods)	(1/1)			M: 661 mg/L			
				└@	Chordata (chordates)							
<		>			- Actinopterygii (ray-fin	ned fishe						
	Data Gan Filling Setti	nas			Alburnus alburnus	s (1/2)			M: 2.25E			
•	Data Gap Fining Setti	ngs			Lepomis macroch	irus (1/1)			M: 100 (1.		
🗸 Only endp	point relevant				Leuciscus idus	(1/1)			M: 1E+0			_
Only chem	nical relevant				Oryzias latipes	(2/2)			M-100		M: >10 mg/L	_
At this posi	ition:				Pimephales prom	elas (4/12)	SMOA: 83.	1 mg/L	M: 173E+03 (1.63E+	M: 1.99 mg/L	M: 10.9 (9.64÷12.3) r (
Select a g	ell with a rigid (hold) path				Poecilia reticulata	(2/2)			M: 1.74E+03 mg/L		M: 15.5 mg/L	
Automate	en with a rigid (bold) path d workflows	1			defined Kingdom	(2/3)			M: 2.1E+03 (1.9E+03	L	M: 5 mg/L	_
Standartiz	ed workflows	1		[-[±] 7 d		(1/1)			M 05 //		M: 6.65 (5.96÷7.41) mg
				± 14 d		(1/1)			M: 85 mg/L			_
				H+I LC50/		(1/1))		1 IVI: 2.95E+03 mg/L	1	1	
1	Dradictad	value fo	rIC	50 of	the mixt	uro l	1200	dor	the evi	porimor	ntal	

1. Predicted value for LC50 of the mixture based on the experimental data of its components is **83.1 mg/l**

Outlook

- Background
- Objectives
- The exercise

Workflow

- Input
- Profiling
- Data
- Data Gap filling

• Report

Report

- Remember the report module allows you to generate a report on the predictions performed with the Toolbox. This module contains predefined report templates as well as a template editor with which users can define their own user defined templates. The report obtained for mixture includes specific information related to mixture prediction. The report can then be printed or saved in different formats.
- Generating the report is shown on next screenshots

Report

Outlook

- Background
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data
 - Data Gap filling
 - Report

Save the prediction result
Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc, on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

Open saved file

