OECD QSAR Toolbox v.4.2

An example illustrating RAAF scenario 6 and related assessment elements
Outlook

• **Background**
• Objectives
• Specific Aims
• Read Across Assessment Framework (RAAF)
• The exercise
• Workflow
Background

• This is a step-by-step presentation designed to take the Toolbox user through the workflow of a data gap filling exercise and assessing of the outcome whether read across prediction is scientifically acceptable or not;

• The read-across prediction will be justified by fulfilling all information requirements according to the Read Across Assessment Framework (RAAF).
Outlook

• Background
• **Objectives**
• Specific Aims
• Read Across Assessment Framework (RAAF)
• The exercise
• Workflow
Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

• Define target endpoint;
• Relevancy of profiles and data availability;
• Calculation of alert performance (AP) accounting for metabolism;
• Searching of analogues accounting for metabolism;
• Category consistency check;
• Selection of RAAF scenario;
• Filling in the report sections related to each read across assessment element.
Outlook

• Background
• Objectives
• **Specific Aims**
• Read Across Assessment Framework (RAAF)
• The exercise
• Workflow
Specific Aims

• To familiarize the user with the Read Across Assessment Framework (RAAF) and more specifically with Scenario 6;

• To introduce to the user the read across assessment elements;

• To introduce to the user the report basket;

• To provide sufficient information allowing a scientific assessment of the outcome;

• To explain to the Toolbox user the rationale behind each step of the exercise.
Outlook

• Background
• Objectives
• Specific Aims
• **Read Across Assessment Framework (RAAF)**
• The exercise
• Workflow
Read Across Assessment Framework (RAAF)
Overview

- RAAF has been developed by ECHA as internal tool providing a framework for a consistent and structured assessment of grouping and read across approaches under REACH.

- The outcome of the assessment is a conclusion on whether the read across is scientifically acceptable or not.

- The RAAF defines different scenarios for different read-across approaches.

- Each scenario is associated with particular aspects (assessment elements, AEs) that are deemed crucial to the assessment.

- Total six scenarios are available: two for analogue approach and four for category approach.
Read Across Assessment Framework (RAAF)

Criteria for the different RAAF scenarios

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>APPROACH</th>
<th>READ-ACROSS HYPOTHESIS BASED ON</th>
<th>QUANTITATIVE VARIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analogue</td>
<td>(Bio)transformation to common compound(s)</td>
<td>Property of the target substance predicted to be quantitatively equal to those of the source substance or prediction based on a worst-case approach.</td>
</tr>
<tr>
<td>2</td>
<td>Analogue</td>
<td>Different compounds have qualitatively similar properties</td>
<td>Properties of the target substance predicted to be quantitatively equal to those of the source substance or prediction based on a worst-case approach.</td>
</tr>
<tr>
<td>3</td>
<td>Category</td>
<td>(Bio)transformation to common compound(s)</td>
<td>Variations in the properties observed among source substances. Prediction based on a regular pattern or on a worst-case approach.</td>
</tr>
<tr>
<td>4</td>
<td>Category</td>
<td>Different compounds have qualitatively similar properties</td>
<td>Variations in the properties observed among source substances. Prediction based on a regular pattern or on a worst-case approach.</td>
</tr>
<tr>
<td>5</td>
<td>Category</td>
<td>(Bio)transformation to common compound(s)</td>
<td>No relevant variations in properties observed among source substances and the same strength predicted for the target substance.</td>
</tr>
<tr>
<td>6</td>
<td>Category</td>
<td>Different compounds have qualitatively similar properties</td>
<td>No relevant variations in properties observed among source substances and the same strength predicted for the target substance.</td>
</tr>
</tbody>
</table>

Read Across Assessment Framework (RAAF)
Selection of RAAF scenario

1. Distinguish whether analogue or category approach is decided based on number (N) of analogues*:
 a) N of analogues ≤ 3 is Analogue approach (scenario 1-2)
 b) N of analogues > 3 is Category approach (scenario 3-6)

2. To identify the basis of the read across hypothesis
 a) (Bio)transformation to common compound(s) – the read across hypothesis is that different substances give rise to (the same) common compounds to which the organism is exposed
 b) Different compounds have the same type of effect(s) – the read across hypothesis is that the organism is not exposed to common compounds but rather, as a result of similarity, that different compounds have similar (eco)toxicological and fate properties. These compounds may be the source and target substances themselves or one or more of their (bio)transformation products.

3. For a category approach (scenario 3-6) there is a need to take further account whether or not quantitative variations in the properties are observed among the category members:
 a) There is quantitative variation in the (eco) toxicity when it is more than 1 log units** (scenario 3 and 4)
 b) Quantitative variation is not expected in the (eco) toxicity when it is less or equal to 1 log unit (scenario 5-6)

* The threshold for number of analogues which distinguishes analogue from category approach is proposed by LMC
**The quantitative variation in the (eco)toxicity of 1 log unit is proposed by LMC due to empirically observations.
Outlook

• Background
• Objectives
• Specific Aims
• Read Across Assessment Framework (RAAF)
• The exercise
• Workflow
The Exercise

• In this exercise we will predict a *Chromosomal aberration* of 2,3,4,5-Tetrachlorophenol [CAS# 4901-51-3], which will be the “target” chemical.

• We will preliminary define the target endpoint;

• The category will be defined by DNA binding mechanism accounting for rat liver metabolism;

• The read across approach will be used for the prediction. The read-across will be based on category approach expressed as common underlying mechanism for metabolites of source and target substances;

• Read across assessment elements will be included to the report

• Examples for the possible content of each of AEs will be provided
Outlook

• Background
• Objectives
• Specific Aims
• Read Across Assessment Framework (RAAF)
• The exercise
• Workflow
Workflow

The Toolbox has six modules which are used in a sequential workflow:

- Input
- Profiling
- Data
- Category Definition
- Data Gap Filling
- Report
Input
Overview

• This module provides the user with several means of entering the chemical of interest or the target chemical.

• Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.
1. Go to **Input**; 2. Click **CAS#**; 3. Enter the **CAS# 4901-51-3** in the blank field; 4. Click **Search**; 5. When the structure appears click **OK**.
Defining of the endpoint allows entering the endpoint of interest e.g. Chromosome aberration, EC3, LC50 etc., along with specific metadata information. Based on the metadata, different relevancy scores for profiles could be provided for same endpoint.

Calculation of alert performance (AP) is only possible if the target endpoint is preliminary selected.
Click on **Define** (1); Expand **Human health hazards** and select **Genetic Toxicity** (2) and click **Next** (3). Select **Endpoint**: Chromosomal aberration, **Metabolic activation**: With S9, **Test organism** (species): Chinese hamster, **Test type**: In Vitro Mammalian Chromosome aberration test, **Type of method**: In Vitro (4). Finally click on **Finish** (5).
Once the endpoint is defined along with its metadata, they appear in the endpoint tree and the corresponding row of the data matrix is yellow highlighted.
• “Profiling” refers to the electronic process of retrieving relevant information for the target compound, other than its environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox databases.

• Available information includes the probable mechanism(s) of action, as well as observed or simulated metabolites.
Profiling
Profiling the target chemical

1. Move to **Profiling** module
2. Tick the checkboxes of all suitable profiles and simulator (green highlighted);
3. Click **Apply**.
Profiling
Profiling results

1) No DNA and protein binding alerts for chromosomal aberration are identified in the target structure as a parent;

2) 4 metabolites are produced as a result of Rat liver S9 metabolism simulator;

3) General mechanistic and endpoint specific DNA binding alerts are identified in the metabolites produced by the Rat liver S9 metabolism simulator.

See on the next slide
Profiling
Profiling the target chemical

1. General Mechanistic
 - DNA binding by OASIS
 - General alert: 2 x AN2
 - Michael-type addition, quinoid structures
 - Michael-type addition, quinoid structures > Q...

2. Endpoint Specific
 - DNA binding by OASIS
 - General alert: 1 x AN2
 - Michael-type addition, quinoid structures

3. Metabolism/Transformations
 - General Mechanistic
 - DNA binding by OASIS
 - General alert: 2 x AN2
 - Michael-type addition, quinoid structures
 - Protein binding alerts for Chromosomal aberration by OASIS
 - General alert: 4 x No alert found
Data Overview

• “Data” refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox;

• Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).
Data

Collecting experimental data

1. Go to **Data** module;
2. Select the green highlighted **Genotoxicity OASIS** database;
3. Click **Gather**.
Data
Collecting experimental data

• Toxicity information on the target chemical is electronically collected from the selected dataset(s).

• It should be kept in mind that the search for data and analogues is performed only among the chemicals which are listed in the selected database(s), which in this example is Genotoxicity OASIS.

• Two experimental data related to the target endpoint are found (see next slide).
A pop-up message informs the user that there 16 experimental data found for the target chemical (1), click **OK** (1); The 2 out of 16 data points are related to the target endpoint (2);
This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.

This is the critical step in the workflow.

Several options are available in the Toolbox to assist the user in refining the category definition.

In this case no DNA alert is identified in the target structure, but in its metabolites. Based on that the analogues will be searched accounting for rat liver metabolism. In this way the target chemical and the identified analogues will have similar metabolic pattern (see the next slides).
Category Definition
Searching for analogues accounting for *rat in vitro* metabolism

1. Go to **Category definition** module; 2. Click **Define with metabolism**; 3. Select Rat liver S9 metabolism simulator; 4. Click **OK**.
Category Definition
Searching for analogues accounting for *rat in vitro* metabolism

Grouping options dialogue appears. It shows all the generated metabolites of the target chemical (use the scroll bar to see them). It has two subsections:

- (1) shows the parent and each of the generated metabolites. This allows defining different criteria for each structure when looking for analogues.

- (2) treats the parent and its metabolites as a whole. i.e. the criteria is provided for the whole package (parent & metabolites) but not for separate metabolites.

A drop down menu (3) is available in the column “Query” for each of the structures which allow setting the type of criteria for looking for analogues.
Category Definition
Searching for analogues accounting for *rat in vitro* metabolism

1. Select a profile option for the package "parent & metabolites";
2. Select "DNA alerts for CA and MNT by OASIS" profile (to facilitate the search you could use the filter);
3. Click **Edit**. The profiling results of the parent and its metabolites based on DNA alerts for CA profiler;
4. Click **OK** to confirm the defined search criteria;
5. The OECD QSAR Toolbox for Grouping Chemicals into Categories
Category Definition
Searching for analogues accounting for *rat in vitro* metabolism

1. Click on **Scales**; 2. Select **Chromosome aberration I (Oasis)** scale; 3. Confirm by "OK"; 4. Click **Calculate**.
Category Definition

Searching for analogues accounting for *rat in vitro* metabolism

Once the calculation of AP is finished, a new window appears providing the following information:

1) AP statistic accounting for all set criteria and all identified alerts in case of selected *profile* query.
2) AP statistic for each of the searching criteria (i.e. for each of the alerts)
3) Percentages of different data (positive/negative) and number of chemicals used for the statistic. The user is also able to see the corresponding chemicals (the parent chemicals are shown, only).

In this case calculated alert performance shows equal performance for both cases mentioned above. The performance shows that the *Quinones and Trihydroxybenzenes* alert has very high predictability with respect the defined endpoint and selected databases.

After analyzing the provided information close the window (4).

Calculation of alert performance create a specific report item stored in the so-called *Report basket*.
Sidebar on the Report basket

- The specific report items are collected during the workflow or from external modeling sources.
- All items are stored in the "Report basket" and can be used in the report to support or justify the consistency of a category.

The OECD QSAR Toolbox for Grouping Chemicals into Categories
March, 2018
After closing the Alert performance window click OK (1) in Grouping options window to execute the search. The Toolbox system will search within the selected database for chemicals having the same metabolic pattern with respect to DNA alerts for CA and MNT by OASIS profiler as the target chemical.

Category Definition
Searching for analogues accounting for rat in vitro metabolism
Category Definition
Searching for analogues accounting for *rat in vitro* metabolism

10 chemicals with 20 experimental results fulfilling the searched criteria are identified.

Chemical statistics presenting the number of chemicals and the available experimental data.
Data Gap Filling
Overview

• “Data Gap Filling” module give access to five different data gap filling tools:
 o Read-across
 o Trend analysis
 o (Q)SAR models
 o Standardized workflow
 o Automated workflow

• Depending on the situation, the most relevant data gap mechanism should be chosen, taking into account the following considerations:
 o Read-across is the appropriate data-gap filling method for “qualitative” endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal). Furthermore read-across is recommended for “quantitative endpoints” (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
 o Trend analysis is the appropriate data-gap filling method for “quantitative endpoints” (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 o “(Q)SAR models” can be used to fill a data gap if no adequate analogues are found for a target chemical. Additionally, two workflows - Standardized and Automated have been developed in order to facilitate the users work. Once started, they follow the implemented logic and finish with prediction. The general differences between the two type of workflows are represented on the next slide.

In this example we will use read-across approach.
1. Go to **Data gap filing** module;
2. Click on the cell corresponding to target endpoint (the yellow row)
3. Click **Read-across**;
1. Open **Calculation options**; 2. Select **Data usage** and choose “Maximal” (worst case scenario is applied); 3. Select **OK**.
Open **Select filter data** and **Subcategorize** by 1) **DNA binding alerts for CA, MN by OASIS** combined with **Rat liver metabolism simulator** remove different 2) **Organic functional groups** remove different by using “Remove selected” button
After subcategorization process go back go the **Category definition** module (1) and apply **Category elements** (2) button. No different selection than the default is needed – click OK (3). Once the category elements are applied accept the prediction (4).

*For more information on category elements see *Tutorial_1_TB 4.2. Category consistency*
Report Overview

• Report module allows generating a report for any of the predictions performed within the Toolbox.

• The report module contains predefined report template which users can customize.

• Additionally specific RAAF scenario could be chosen. Selection of one of the scenarios will append automatically the related assessment elements related to the corresponding report sections.
Selection of RAAF scenario

To select the applicable RAAF scenario for assessment, the following aspect should be identified*:

- the type of approach applied - analogue approach or category approach;
- the read-across hypothesis;
- For category approach - whether quantitative variations in the properties are observed among the category members must be considered.

Selection of RAAF scenario

For the current example:
• the type of approach applied - category approach is used (threshold of >3 analogues);
• the read-across hypothesis – different compounds with common underlying mechanism;
• For category approach – no quantitative variations is observed among the category members

Based on that Scenario 4 was selected for the current example.
No quantitative variation of category members is observed with respect to target endpoint (chromosomal aberration).

- Target and analogues are grouped as a result of Rat liver S9 metabolism
- They all have common reactivity pattern with respect to DNA interaction
- No quantitative variation of category members is observed
1. Go to **Report** module; 2. Select a cell with prediction – "R: Positive"; 3. Click **Prediction**; The **Report wizard** appears. It consists of different sections related to the types of report - **Prediction** (4), **Category** (5) and **Data matrix** (6). The content of each of these three files could be customized in the first page of the **Wizard pages** (7). Check the box at the top to add **RAAF scenario** (8); 4. Select **Scenario 6** from the drop-down menu (9).
Report
Report generation according to RAAF Scenario 6

AEs related to each scenario appeared automatically to the corresponding report section

AEs appear in the following report sections: Target profiles (1), Category definition and members (2) and Consistency check (3).

The assessment elements of Scenario 6 are specific distributed: one AE is included in Target profiles and Category definition and members (1, 2), and nine AEs are associated with Consistency check (3).

Each of the AEs will be considered in the next slides.
Report
Report generation according to RAAF Scenario 6

Section Prediction
Subsection: Target profilers
AE 6.1 Compounds the test organism is exposed to

1. Select **Target profiles**;
2. Expand the **AE 6.1**;
3. Hint showing the purpose of each AE is available.
Information can be included by clicking the **Add/Remove** button (1) located below the corresponding AE. The **Add/Remove** button invokes the so-called “**Report basket**” (2). The latter contain different items triggered by the actions of the user during the workflow (e.g. Alert performance calculation, applying of category elements, etc.). Additionally, new items (including items with external content) can be created (3).

Items with external content (text and picture) will be added for **AE 6.1 Compounds the test organism is exposed to (see next slides)**
Five source substances (B, C, D, E and F) are used to predict the property under consideration for Target A; Source substances (analogues) B, C, D, E and F have common reactivity pattern; Functionality that may cause chromosomal aberration by three different mechanisms for DNA interaction is identified in the metabolites of all category members; The primary group is defined based on “Quinones and Trihydroxybenzenes” accounting for in vitro Rat metabolism.

How to add the report item with external content is illustrated on the next slide:
In order to add text information to the report: expand the AE 6.1 (1), click Add/Remove (2), click Create new (3) in Report basket window, click Text provided by user (4), write in or paste the text in the appeared empty window (5), click OK (5) and confirm by OK (6). A new item called “Test provided by user..” appeared under section External content of the Report basket (7). Finally click OK (8).
Section Prediction
Subsection: Target profilers

AE 6.1 Compounds the test organism is exposed to

Example of how the example text will look in the generated report is shown below:

- Text provided by user (Five source substances (B, C, D, E and F) are used to ...)
- Five source substances (B, C, D, E and F) are used to predict the property under consideration for Target A;
- Source substances (analuges) B, C, D, E and F have common reactivity pattern;
- Functionality that may cause chromosomal aberration by three different mechanisms for DNA interaction is identified in the metabolites of all category members;
- The primary group is defined based on “Quinones and Trihydroxybenzenes” accounting for in vitro Rat metabolism.

There are two options (2) for editing or preview the generated report item. How will look the text item in the report is shown on the right (2).
Report
Report generation according to RAAF Scenario 6

Section Prediction
Subsection: Target profilers
AE 6.1 Compounds the test organism is exposed to

The possible image that could be added to the AE 6.1 is:

Target A Source B Source C Source D Source E Source F

How to add the image to the report is illustrated on the next slides:
In order to add picture to the report: click **Add/Remove** then click **Create new** (1) in the **Report basket** window, click **Image provided by user** (3) and then select **OK** (4). New window appears where you can add your custom picture by Copy/Paste or browsing (5) to the directory in your PC where the desired picture is saved*. Finally confirm by **OK** (6). The entered picture will appear in the **Report basket** under **External content** section and the check box will be ticked. Finally confirm by **OK** (7) in the Report basket. As result of this a new item is added in the wizard under the AE 6.1.

*In the current example a picture illustrating the target chemical marked as **Target A** and source substances (marked with Source from B to F) was prepared in advance.
Section Category
Subsection: Category definition and members

AE C.1 Substance characterization

One assessment element (AE C.1) (1) related to the characterization of the category members is included in the Category definition and members section. It automatically populated by the system with Category members report item (2), which is generated during the workflow. If impurities/additives of the used analogues are available, they will be also included. The current analogues have no additives/impurities. Example on how the AE C.1 will look in the generated report is shown in right. Click on Preview button (3).
The possible example text to added to the AE 6.4 is:

- Target substance A and all source substances (B-F) do not have DNA alerts and are not responsible for the toxicity effects acting as parents.
- Alerts for DNA binding causing chromosomal aberration (Quinones and Trihydroxybenzenes alert) are identified in the metabolites of the target and the source substances after in vitro Rat liver S9 activation
- Our assumption is that the toxicity effect of the category members is caused due to formation of active metabolites rather than of the chemicals themselves.

The OECD QSAR Toolbox for Grouping Chemicals into Categories
Report generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members

AE 6.4 Exposure to other compounds than to those linked to the prediction
Report

Report generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members

AE 6.4 Exposure to other compounds than to those linked to the prediction

Example on how the AE 6.4 will look in the generated report is shown:

Additionally to the text, the profiling similarity accounting for metabolism could be also included. To do this click on Add/Remove button then check the box of Profiling similarity (the six ordered box) (2). The item is stored in the report basket, during the actions performed in the section Profiling. Right click and select Preview button (3). Tables summarizing the number of metabolite including the parent with the alerts is provided (4).
The possible example text to be added to the AE 6.5 is:

- The target substance A and source substances B, C, D, E and F have common reactivity pattern based on presence of Quinones and Trihydroxybenzenes functionality in the structures of their metabolites;
- The Quinones and Trihydroxybenzenes functionality could cause toxicity effect by three different mechanisms for DNA binding;
- No other functionalities causing chromosomal aberration by DNA damage have been identified in the structures of the parents and metabolites.
The possible content of text added to the **AE C.3** is:

- No alerts related to chromosomal aberration have been identified in the structures of the target and the source substances.
- Target and analogues are activated as a result of in vitro S9 metabolism simulator by generating “Quinones and Trihydroxybenzenes”.
- In this respect, the structurally defined category from target (A) and five source substances (B, C, D, E, F) have common reactivity pattern of generated in vitro S9 metabolites.
The possible example text which could be added to the AE C.6 is:

- The analogues are obtained based on a grouping accounting for in vitro rat liver metabolism;
- All analogues having different metabolic pattern with respect to DNA interaction causing chromosomal aberration have been removed during the subcategorization process.
- The identified five analogues used in the read-across prediction have the common functional groups according to the OFG profiling scheme and the same reactivity pattern with respect to DNA interaction;
Report
Report generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members
AE C.2 Structural similarity and structural differences within the category

The possible content of the text which could be added to the AE C.2 is:

- Structural similarity between Target substance A and five source substances (B, C, D, E and F) according to Str. similarity profiler is in the range of [29 - 82%]
- Target A and substances B, C have same funcyionalities with respect to OFG profiler
- Source substance D, E and F have same functionalities as target A, with exception of one group: Aromatic perhalogencarbons

Appendix with similarity table and profile statistics for OFG profiler could be provided here (see next two slides):
Section Category
Subsection: Category definition and members
AE C.2 Structural similarity and structural differences within the category

Two additional items have to be added in order to support the textual information:
Click Add/Remove button (1) and check the Structural similarity item (2) which is stored in the Report basket. Right click and preview the item (3). A table providing structural similarity between each of the category members is shown (4).

Example with how the AE C.2 will look in the generated report is shown below:

<table>
<thead>
<tr>
<th>Structural similarity Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode: Hologram, CombineAllFeatures</td>
</tr>
<tr>
<td>Measure:</td>
</tr>
<tr>
<td>- Dice</td>
</tr>
<tr>
<td>- AtomCenteredFragments</td>
</tr>
<tr>
<td>Atom characteristics:</td>
</tr>
<tr>
<td>- AtomType</td>
</tr>
<tr>
<td>- CountAttached</td>
</tr>
<tr>
<td>- Hybridization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculated structure similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
</tr>
<tr>
<td>Chemical 1</td>
</tr>
<tr>
<td>Chemical 2</td>
</tr>
<tr>
<td>Chemical 3</td>
</tr>
<tr>
<td>Chemical 4</td>
</tr>
<tr>
<td>Chemical 5</td>
</tr>
<tr>
<td>Chemical 6</td>
</tr>
</tbody>
</table>
Report
generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members

AE C.2 Structural similarity and structural differences within the category

The possible report item containing image file could be added to the AE C.2 is (see slide 57 with instructions how to create it):

Appendix with profiling statistics based on OFG profiler could be added:
The possible example text for **AE 6.2** is:

- Target substance A and source substances B, C, D, E and F react via a common underlying mechanism according to *DNA alerts for CA and MNT by OASIS*.
- *Quinones and Trihydroxybenzenes* functionality alert is identified in all category members after metabolic activation (see Appendix Metabolite/Profiling).
- Common mechanism is illustrated in Appendix Metabolites/Profiling.
- Our assumption is that the toxic effect is based on *Quinones and Trihydroxybenzenes* functionality.
- As a primary group is used the *Quinones and Trihydroxybenzenes* group presented with three different mechanism of actions, supported by the calculated alert performance.
- The similarity with respect to the metabolic pattern could be seen in **AE 4.5.** above.

Additionally, metabolic maps (for each of the analogues), produced by external software or found in the literature, could be included to this AE in order to support the mechanistic similarity of the category.
Report
Report generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members
AE 6.2 Common underlying mechanism, qualitative aspects

Example on how the Alert performance included in the AE 6.2 will look in the generated report is shown:

AE 6.2 is related to the mechanistic similarity of the final category. All items in the report basket related to the mechanistic consistency of the category are added automatically if category consistency is applied preliminary (1). Only the Alert performance item have to be included here manually, so click on Add/Remove (2), then check the Alert performance item (3) and click OK (4).
Section Category
Subsection: Category definition and members

AE 6.3 Common underlying mechanism, quantitative aspects

The possible text added for the AE 6.3 is:

- Target substance A and five source substances has common reactivity pattern
- They all formed Quinones and Trihydroxybenzenes functionality as metabolites responsible for the toxicity effects
- Toxic effects of all source substances and target are supported by the identified additional genotoxicity data – see Data matrix file generated by prediction Report

Include the Endpoint data variation item stored in the report basket (1).
The possible example text is:

- The target substance have been tested according to *in Vitro Mammalian Chromosome Aberration Test*
- All the experimental data for the five source substances has been tested based on *in Vitro Mammalian Chromosome Aberration Test* and are used for the prediction of Chromosomal aberration of the target substance A.
Report
generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members
AE 6.5 Reliability and adequacy of the source study(ies)

The possible image added to the text in AE C.5 in RAAF scenario 6:
The possible text to added to the AE C.4 is:

- The target substance A and the five source substances (B, C, D, E and F) show indication for chromosomal aberration effect.
- The latter is supported by the experimental data identified for AMES mutagenicity effect (caused also by DNA damage) found for target and source substances.

Here could be provided the data matrix snapshot or reference to the Data matrix report (see next slide).
Report generation according to RAAF Scenario 6

Section Category
Subsection: Category definition and members
AE C.4 Consistency of effects in the data matrix

The image added to the AE C.4:
Report
Generation of report

After the click on the Create report button, *Generated report files* window appears. It contains three type of files:

1. **Prediction report** - a PDF file containing the prediction information related to the target.
2. **Category report** - a PDF file containing information for the consistency of the final category (target plus used analogues)
3. **Data matrix** - a MS Excel file containing chemicals used for prediction along with their data for selected parameters, profiles and endpoint tree positions.

RAAF AEs are included in the first two files.
All generated files should be provided when submit a prediction.
The OECD QSAR Toolbox for Grouping Chemicals into Categories

March, 2018

73
Congratulations

• You have now been introduced to the RAAF scenario;
• You have now been introduced to the *Report basket*.
• You have now been introduced to the AEs related to Scenario 6.
• Note proficiency comes with practice.