Research Areas

 

Research at the Laboratory of Mathematical Chemistry takes place at the borderline

between chemistry, biology and mathematics.  Although each team member has

different scientific expertise, all contribute in a synergistic manner.  The Laboratory

provides insight, knowledge, assistance, and solutions in the following areas

(but not limited to):

 

 

Molecular modeling

 

Substance identity (discrete substances, tautomers, mixtures, UVCB materials),

computational methods (pattern recognition, conformer generation, applicability

domain), and databasing (QA of chemical identity, search engine, databases

of fate, (eco)toxicity and metabolism data).

 

 

Environmental fate and Ecotoxicity

 

Models for predicting abiotic and biotic degradation (hydrolysis, autoxidation,

Catabol, CATALOGIC 301 B, C and F models), bioconcentration (BCF base-line,

half-life in fish) and acute aquatic toxicity (algae, crustaceans, fish).

 

 

Human health hazard

 

Models for predicting receptor mediated toxicity (ER, AR and AhR, binding affinity,

Aromatase inhibition), skin sensitization, in vitro (Ames, chromosomal aberration)

and in vivo (liver, bone marrow MNT) genotoxicity.

 

 

Metabolism

 

Simulation of prokaryotic and eukaryotic metabolism - subcellular (micronucleous),

cellular (rat liver S9) and in vivo and their implementation in fate and toxicological

models (CATALOGIC and TIMES platforms).

 

 

The efficiency of the work is broadly evident in the numerous scientific

publications and citations in international journals.